

REGIONE PIEMONTE PROVINCIA DI ASTI

COMUNE DI REVIGLIASCO D'ASTI

LAVORI DI RIFACIMENTO PONTE E COMPLETAMENTO
DIFESA SPONDALE SU STRADA CASCINA BIANCA

PR N°	OGETTO	OGGETTO PROGETTO DEFINITIVO - ESECUTIVO	SCALA
DIS.	м ° М		
MOD.	DATA	DESCRIZIONE	V
	10/06/2019	PRIMA EMISSIONE	

STUDIO DI INGEGNERIA

Dott.Ing. Gianluca MONDINO

Via Stazione n. 8

Motta di Costigliole d'Asti

Tel./fax 0141/969335 cell. 333/2389768

P.IVA 01340110053 C.F. MNDGLC75H13A479E

TITOLO: RELAZIONE GEOTECNICO STRUTTURALE INTERVENTO 1

IL RUP: Geom. Grandi Giorgio

INDICE GENERALE

- 1. CONSIDERAZIONI GENERALI
- 2. RIFERIMENTI NORMATIVI
- 3. CARATTERIZZAZIONE GEOTECNICA DEL TERRENO
- 4. DESCRIZIONE INTERVENTO
- 5. AZIONI CARATTERISTICHE
- 6. MODELLAZIONE E CALCOLO
- 7. VERIFICA MURO
- 8. VERIFICA PALI DI FONDAZIONE
- 9. CONCLUSIONI

1. CONSIDERAZIONI GENERALI

L'opera oggetto della presente relazione risulta essere il muro di contenimento della strada cascina Bianca (intervento 1) da realizzarsi nel Comune di Revigliasco d'Asti.

Il muro presenta una lunghezza di 38.85m con suola di fondazione di larghezza 160cm spessore 50cm e paramento del muro di altezza variabile da 130 a 200cm spessore 40cm.

La fondazione poggia su pali trivellati diametro 60cm lunghezza 700cm disposti su due file a quinconce con passo 800 cm.

2. RIFERIMENTI NORMATIVI

Legge n°1086 del 5/11/1971 "Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica"

D.M.17/01/2018 "Norme tecniche per le costruzioni"

Circolare 21/01/2019 Consiglio Superiore dei Lavori Pubblici "Istruzioni per l'applicazione delle Norme tecniche per le costruzioni"

3. CARATTERIZZAZIONE GEOTECNICA DEL TERRENO

La caratterizzazione stratigrafica del terreno ed i parametri meccanici del terreno sono stati ricavati mediante esecuzione di 2 prove penetrometriche dinamiche sul luogo di intervento eseguite nel 2019 dalla dott.ssa Lignana Grazia.

Dalle prove eseguite si evince che le due prove mostrano un andamento alquanto disomogeneo, e si ritiene valida la seguente stratigrafia a partire dal piano stradale:

- Depositi alluvionali/ coltre limoso sabbiosa potente 5 m e 4.60 m;
- Argilla mediamente addensata potente circa 1m e 2 m;
- Substrato argilloso compatto a partire da 6.60m e 6.30m.

Durante le prove è stata rinvenuta acqua di falda intorno a 1.80 m dal p.c corrispondente al piano di scorrimento del rio rispetto al piano strada.

Dall'esame delle prove penetrometriche, dai dati forniti dal dott.ssa Lignana e dal raffronto con quelli riportati in letteratura dai diversi autori si possono attribuire in condizioni non drenate i seguenti parametri caratteristici:

DEPOSITI ALLUVIONALI/ COLTRE LIMOSO SABBIOSA

Peso di volume naturale $\gamma_n = 14.81 \text{ kN/mc}$

Coesione efficace c' = 0 kPa

Angolo di resistenza al taglio $\varphi = 21,28^{\circ}$

ARGILLA MEDIAMENTE ADDENSATA

Peso di volume naturale $\gamma_n = 18,36$ kN/mc

Coesione efficace c' ≈ 40 kPa

Angolo di resistenza al taglio $\varphi = 24,42^{\circ}$

SUBSTRATO ARGILLOSO COMPATTO

Peso di volume naturale $\gamma_n = 22,84$ kN/mc

Coesione efficace c' = 60 kPa

Angolo di res. al taglio $\varphi = 28,41^{\circ}$

A favore di sicurezza, i parametri assunti all'interno delle verifiche di calcolo sono i seguenti:

DEPOSITI ALLUVIONALI/ COLTRE LIMOSO SABBIOSA

Peso di volume naturale $\gamma_n = 15 \text{ kN/mc}$

Coesione efficace c' = 0 kPa

Angolo di resistenza al taglio $\varphi = 21^{\circ}$

ARGILLA MEDIAMENTE ADDENSATA

Peso di volume naturale $\gamma_n = 18 \text{ kN/mc}$

Coesione efficace c' ≈ 40 kPa

Angolo di resistenza al taglio $\varphi = 24^{\circ}$

SUBSTRATO ARGILLOSO COMPATTO

Peso di volume naturale $\gamma_n = 20 \text{ kN/mc}$

Coesione efficace c' = 60 kPa

Angolo di res. al taglio $\varphi = 28,41^{\circ}$

4. DESCRIZIONE INTERVENTO

Il tratto di strada Cascina Bianca oggetto dell'intervento 1 è localizzato ai piedi dei rilievi collinari e costituisce un settore di raccordo tra la pianura alluvionale ed i rilievi stessi. In particolare il sito d'intervento è sito in sinistra idrografica del Rio della Valle di Antignano che, dopo la confluenza con altri Rii si immette nel F. Tanaro. Il rio ha svolto una marcata attività erosiva della sponda in corrispondenza della quale insiste la sede viaria per cui occorre realizzare delle opere di protezione al piede della sponda.

Vista la presenza di uno strato di depositi alluvionali limoso sabbiosi (strato entro cui si concentrano le superfici di scivolamento e le spinte) risulta necessario eseguire fondazioni profonde al fine di trasferire i carichi agenti sulle opere di sostegno al substrato compatto.

Pertanto in seguito alle considerazioni sopra riportate la soluzione migliore risulta essere la realizzazione di un muro di contenimento in cemento armato fondato su pali diametro 60cm di lunghezza 700cm fino ad immorsarsi nello strato di substrato argilloso compatto.

Il muro contiene la spinta del terreno più superficiale, mentre i pali consentono di trasferire i carichi derivanti dal muro al substrato.

5. AZIONI CARATTERISTICHE

Azioni permanenti:

- Peso proprio della struttura
- Spinta del terreno

Azioni variabili:

- Sovraccarichi di esercizio stradali
- Sovraccarico neve

Azioni di precompressione:

Non presenti

Azioni eccezionali:

Urto sulla barriera

Azione sismica:

Per zona 4

Nelle azioni permanenti si è trascurata la spinta dell'acqua poiché:

 Eventuali venute d'acqua in seguito ad eventi temporaleschi sono contrastate dalla presenza dei barbacani sulla superficie del paramento e dal drenaggio a tergo.

Azioni permanenti:

Peso proprio del calcestruzzo: 25kN/m³ Spinta del terreno valutata dal software

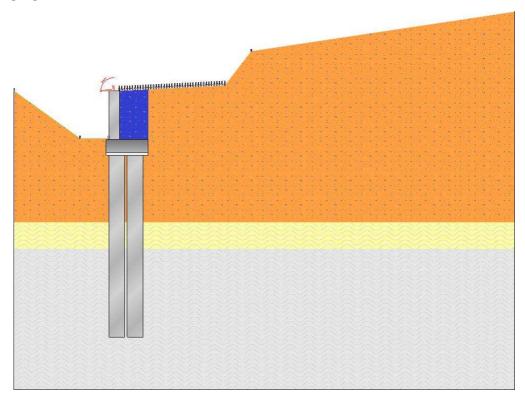
Azione variabile

Traffico stradale per strada comunale: 1500 daN/m²

Azioni eccezionali:

Urto su barriera pari a: 100 kN/m a 1m di altezza che si ripartisce a favore di sicurezza su un tratto di 4m di lunghezza di muro e non su tutto il muro, pertanto si è considerato nei calcoli una forza di 25 kN/m su ogni concio di lunghezza 100cm.

Azione sismica:


L'azione viene determinata dal software di calcolo a SLV per quanto concerne lo stato limite ultimo e SLD per lo stato limite di esercizio in funzione dell'accllerazione massima al sito.

6. MODELLAZIONE E CALCOLO

Le verifiche strutturali e geotecniche dei muri vengono eseguite con i software di calcolo IS MURI e IS PALIFICATE della Omnia IS CDM Dolmen di Torino Via Drovetti versione 18.0.

Si procede alla verifica del muro mediante il software IS MURI dopo di che si procede alla verifica dei pali mediante il software IS PALIFICATE.

7. VERIFICA MURO

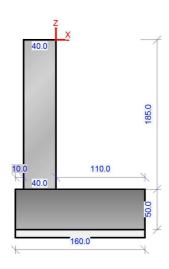
- Riassunto verifiche

Di seguito viene riportata la tabella riassuntiva con i fattori di sicurezza minimi (= rapporto R_d/E_d o C_d/E_d) calcolati per tutte le verifiche.

La verifica si intende superata se il valore del rapporto è maggiore o uguale a 1.0.

Le caselle con i trattini indicano che la verifica corrispondente non va svolta per il relativo Caso di Carico.

caso di	resistenza	resistenza	stabilita		FS strutturale	17		FS strutturale	FS strutturale			FS strutturale
carico	assiale	trasversale	globale	(nresso-	Fusto (taglio)	(tensione	(tensione	(· I	Fondazione (flessione)	Fondazione (taglio)	(tensione	Fondazione (tensione acciaio)
1 - STR(SLU)	1.09	7.08		7	6.26				6.27	4.31		
2 - GEO(SLU_GE O)			2.15									
3 - SLV_SISMA_ SU(SLV)	1.78	11.58	2.82	15	12.71				11.68	7.55		
4 - SLV_SISMA_ GIU(SLV)	1.67	11.09	2.83	14.59	12.42				11.14	6.99		
5 - SLD_SISMA_	1.78	14.42										


SU(SLD)												
6 - SLD_SISMA_ GIU(SLD)	1.73	14										
7 - STR_ECCEZI ONALE(SLU)	1.44	6.27		1.66	4.55				2.74	7.51		
8 - GEO_ECCEZI ONALE(SLU_ GEO)			2.57									
9 - EQU_ECCEZI ONALE(SLU_ EQU)												
10 - RARA(RARA)						49.24	8.97				17.15	6.7
11 - FREQ.(FREQ UENTE)								8.92				
12 - Q.PERM.(QU ASI_PERM)						36.93		6.69			12.86	

Muro Verificato!

[Verifiche Superate]

- Elementi strutturali

- Muro e fondazione

- Pali

Fila 1:

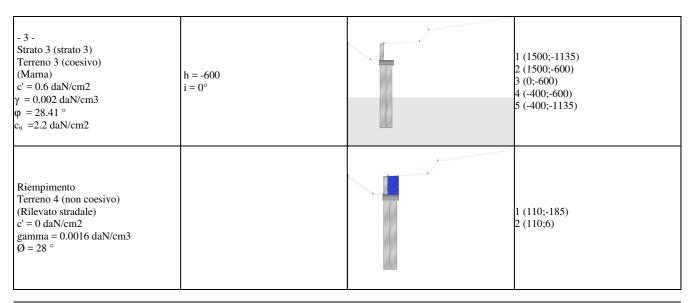
- lunghezza = 700 cm
- interasse = 800 cm
- scostamento iniziale = 0 cm

- dist. bordo fondazione = 40 cm
- inclinazione = 0°
- tipo = trivellato
- vincolo = incastro
- \emptyset calcestruzzo = 60 cm \emptyset barre = 16 mm

Fila 2:

- lunghezza = 700 cm
- interasse = 800 cm
- scostamento iniziale = 400 cm
- dist. bordo fondazione = 110 cm
- inclinazione = 0 $^{\circ}$
- tipo = trivellato
- vincolo = incastro
- \emptyset calcestruzzo = 60 cm \emptyset barre = 16 mm

- Terreno


- Profili di Monte e Valle

MONTE -			-	VALLE			
punto	x [cm]	z [cm]		punto	x [cm]	z [cm]	
1	0	0	-	1	-40	-180	
2	400	20	-	2	-150	-180	
3	500	150	-	3	-400	0	
4	1500	300	-				

Coordinate vertici profilo di monte e di valle.

- Strati

strato e	dati	disegno	coord.
terreno	inseriti	strato	$(\mathbf{x};\mathbf{z})$
- 1 - Strato 1 (strato 1) Terreno 1 (non coesivo) (Limo) c' = 0 daN/cm2 γ = 0.0015 daN/cm3 φ = 21 °	$h = 0$ $i = 0^{\circ}$		1 (1500;-500) 2 (1500;300) 3 (500;150) 4 (400;20) 5 (110;6) 6 (110;-185) 7 (110;-235) 8 (-50;-235) 9 (-50;-185) 10 (-40;-185) 11 (-40;-180) 12 (-150;-180) 13 (-400;0) 14 (-400;-500) 15 (0;-500)
- 2 - Strato 2 (strato 2) Terreno 2 (coesivo) (Argilla) c' = 0.4 daN/cm2 γ = 0.0018 daN/cm3 φ = 24 ° c _u =1.0493 daN/cm2	h = -500 i = 0°	N.	1 (1500;-600) 2 (1500;-500) 3 (0;-500) 4 (-400;-500) 5 (-400;-600) 6 (0;-600)

Stratigrafia.

- Normativa, materiali e modello di calcolo

- Norme Tecniche per le Costruzioni 17/01/2018

- Approccio 2

Coeff. sulle azioni	Coeff. proprietà terreno	Coeff. resistenze
		- Capacità portante = 1.4
- permanenti/favorevole = 1		- Scorrimento = 1.1
permanenti/sfavorevole = 1.3	- Coesione = 1	- Resistenza terreno a valle = 1.4
- permanenti non strutturali/favorevole = 0.8	- Angolo di attrito = 1	- Ribaltamento = 1.15
- permanenti non strutturali/sfavorevole = 1.5	- Resistenza al taglio non drenata = 1	- Capacità portante (sisma) = 1.2
- variabili/favorevole = 0 - variabili/sfavorevole = 1.5	- Kesistenza ai tagno non dienata – i	- Scorrimento (sisma) = 1
		- Resistenza terreno a valle (sisma) = 1.2
		- Ribaltamento (sisma) = 1

- combinazione 2 per stabilità globale -

Combinazione 2									
Coeff. sulle azioni	Coeff. proprietà terreno	Coeff. resistenze							
- permanenti/favorevole = 1 - permanenti/sfavorevole = 1 - permanenti non strutturali/favorevole = 0.8 - permanenti non strutturali/sfavorevole = 1.3 - variabili/favorevole = 0 - variabili/sfavorevole = 1.3	- Coesione = 1.25 - Angolo di attrito = 1.25 - Resistenza al taglio non drenata = 1.4	- Stabilità globale = 1.1 - Stabilità globale (sisma) = 1.2							

- Dati di progetto dell'azione sismica:

L'analisi è stata eseguita in condizioni sismiche; parametri scelti :

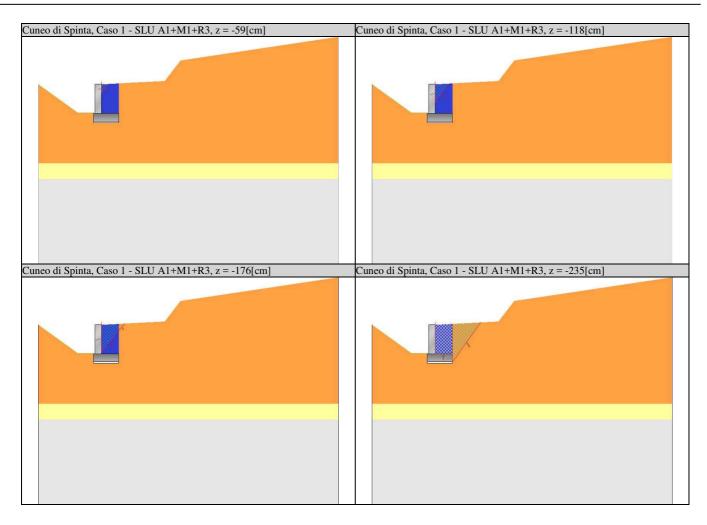
- località = REVIGLIASCO D'ASTI [44.85793000,8.15935700]
- vita nominale = 50 anni
- classe d'uso = II
- -SLU = SLV
- -SLE = SLD
- categoria di sottosuolo = cat D
- categoria topografica = categoria T1
- $ag (SLV) = 0.4163 \text{ m/s}^2$
- Fo (SLV) = 2.6993
- $ag (SLD) = 0.2078 \text{ m/s}^2$
- Fo (SLD) = 2.5979

- beta m (SLV)=1
- beta m (SLD)=1
- beta r(SLV)=1
- beta s (SLV) = 0.38
- beta s (SLV) = 0.47
- --> kh (muro, SLV) = 0.0764
- --> kv (muro, SLV) = 0.0382
- --> kh (muro,SLD) = 0.0381
- --> kv (muro, SLD) = 0.0191
- --> kh (ribaltamento, SLV) = 0.0764
- --> kv (ribaltamento,SLV) = 0.0382
- --> kh (pendio, SLV) = 0.029
- --> kv (pendio, SLV) = 0.0145
- --> kh (pendio, SLD) = 0.0179
- --> kv (pendio, SLD) = 0.009

- Caratteristiche dei materiali:

Calcestruzzo Fusto	Calcestruzzo Fondazione	Acciaio
- Descrizione = C28/35	- Descrizione = C25/30	- Descrizione = B450C
$- f_{ck} = 290.5 \text{ daN/cmq}$	$- f_{ck} = 249 \text{ daN/cmq}$	- E = 2000000 daN/cmq
$-\gamma_{\rm c} = 1.5$	$-\gamma_{\rm c} = 1.5$	$- f_{yk} = 4500 \text{ daN/cmq}$
$- f_{cd} = 164.6 \text{ daN/cmq}$	$- f_{cd} = 141.1 \text{ daN/cmq}$	$-f_{tk} = 5400 \text{ daN/cmq}$
$-E_{cm} = 325881.1 \text{ daN/cmq}$	$-E_{cm} = 314471.6 \text{ daN/cmq}$	$- \varepsilon_{\rm yd} = 0.1960 \%$
$-\alpha_{\rm cc} = 0.85$	$-\alpha_{\rm cc} = 0.85$	$- \varepsilon_{\rm ud} = 6.7500 \%$
$-\varepsilon_{c2} = 0.2000 \%$	$- \varepsilon_{c2} = 0.2000 \%$	$-\gamma_{\rm s} = 1.15$
$- \varepsilon_{cu2} = 0.3500 \%$	$-\varepsilon_{\rm cu2} = 0.3500 \%$	$-f_{yd} = 3 913.0 \text{ daN/cmq}$
$-\gamma$ (p.vol.) = 0.0025 daN/cmc	$-\gamma$ (p.vol.) = 0.0025 daN/cmc	$-f_{ud} = 4 695.7 \text{ daN/cmq}$

Condizioni ambientali (fusto, monte) = ordinario (X0, XC1, XC2, XC3).


Condizioni ambientali (fusto, valle) = molto aggressivo (XD2, XD3, XS2, XS3, XA3, XF4).

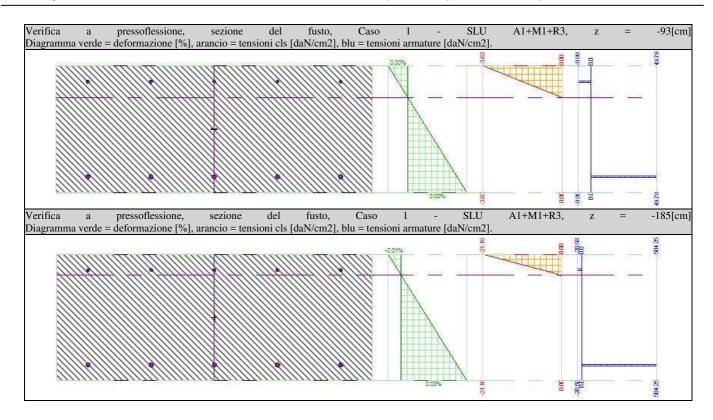
Condizioni ambientali (fondazione) = ordinario (X0, XC1, XC2, XC3).

- Opzioni di calcolo

Spinte calcolate con coefficiente di spinta attiva "ka" (si considera che il muro non sia in grado di subire spostamenti). Il calcolo della spinta è svolto secondo il metodo del cuneo di tentativo generalizzato (Rif.: Renato LANCELLOTTA "Geotecnica" (2004) - NAVFAC Design Manual 7.02 (1986)). Il metodo è iterativo e prevede la suddivisione del terreno a monte dell'opera in poligoni semplici definiti dal paramento, dalla successione stratigrafica e dalla superficie di scivolamento di tentativo. La procedura automatica vaglia numerose superfici di scivolamento ad ogni quota di calcolo lungo il paramento, determinando la configurazione che comporta la spinta massima sull'opera.

- Attrito muro terreno / $\emptyset' = 0.67$
- Aderenza muro terreno / c' = 0
- Attrito terreno terreno / $\emptyset' = 0.67$
- Aderenza terreno terreno / c' = 0

La verifica di stabilità globale viene eseguita con i metodi di Fellenius e Bishop semplificato, utilizzando il coefficiente di sicurezza minore.


- Attrito stab. globale / \emptyset ' o Cu = 1

Il calcolo delle sollecitazioni e degli spostamenti dell'opera viene svolto con il metodo degli elementi finiti (FEM). Gli elementi schematizzanti il muro hanno peso e caratteristiche meccaniche proprie dei materiali di cui è costituito. Il terreno spingente (a monte) è rappresentato per mezzo di azioni distribuite applicate sugli elementi. Il terreno di fondazione è rappresentato per mezzo di elementi finiti non-lineari (con parzializzazione), con opportuno coefficiente di reazione alla Winkler in compressione.

- lunghezze aste elevazione = 20 [cm]
- lunghezze aste fondazione = 10 [cm]
- coefficiente di reazione del terreno (Winkler) = 5 [daN/cm3]

La verifica delle sezioni in cemento armato viene eseguita a SLU e SLE. La pressoflessione è verificata a SLU con i diagrammi costitutivi parabola-rettangolo (cls) e bilatero (acciaio) [NTC18 4.1.2.1.2]. La resistenza nei confronti di sollecitazioni taglianti è verificata a SLU [NTC18 4.1.2.3.5]. A SLE si verifica lo stato limite di apertura delle fessure [NTC18 4.1.2.2.4], e la tensione massima nei materiali [NTC18 4.1.2.2.5].

- apertura delle fessure: kt=0.40, k1=0.80, k2=0.50, k3=3.40, k4=0.43. interasse barre non limitato.
- lunghezza di ancoraggio, numero di diametri = 20
- lunghezza di ancoraggio, lunghezza minima = 15 [cm]

- Carichi

- Carichi sul Terreno
- Carichi Nastriformi:

Carico 1:

- descrizione = carico nastriforme 1
- tipologia = variabili da traffico distribuiti
- estremi (xi;xf) = 0;400 cm
- tipo inserimento = sul profilo
- intensità = 0.15 daN/cm2

- Carichi sulla Struttura

- Carichi in Testa muro:

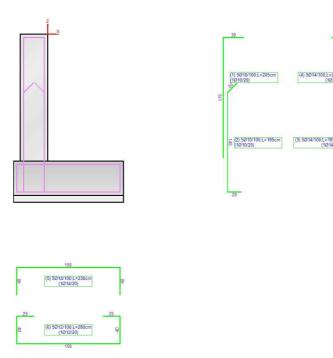
In testa al muro è applicata la seguente terna di sollecitazione:

Carico 1:

- descrizione = carico testa muro
- tipologia = eccezionale
- -N = 50 daN a modulo
- -M = 250000 daN*cm a modulo
- -T = 2500 daN a modulo

Considera come carico principale variabile (per coeff. psi [NTC18 2.5.3]) i casi di tipo: tutti

- Casi di Carico

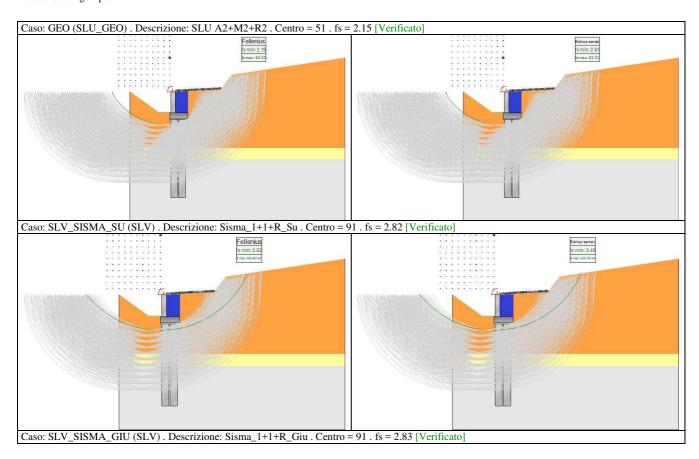

caso	coefficienti per i carichi	
STR (SLU)	Car.Nas.(ter) 1) carico nastriforme 1	[1.35; -]
descr. = SLU A1+M1+R3	Car.Pun.(mur) 1) carico testa muro	[0.00; -]
coeff. = 1.3(pp.), 1.3(ter.m.), 1.3(fld.m.)1.3(ter.cs.), 1.3(fld.cs.)		
GEO (SLU_GEO)	Car.Nas.(ter) 1) carico nastriforme 1	[1.15; -]
descr. = SLU A2+M2+R2	Car.Pun.(mur) 1) carico testa muro	[0.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
SLV_SISMA_SU (SLV)	Car.Nas.(ter) 1) carico nastriforme 1	[0.00;0.00]
descr. = Sisma 1+1+R Su	Car.Pun.(mur) 1) carico testa muro	[00.0;00.0]

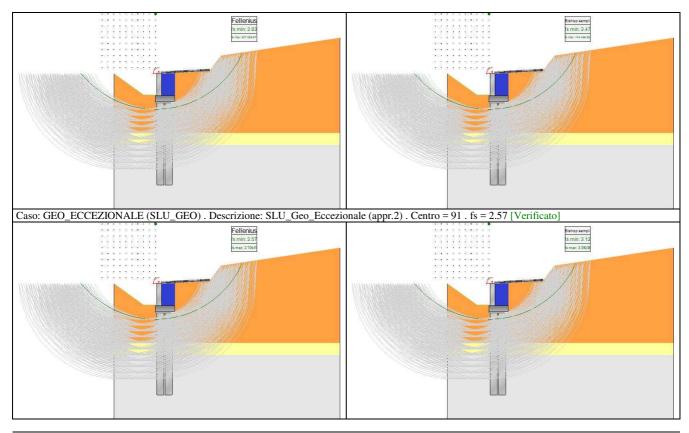
	1	
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
SLV_SISMA_GIU (SLV)	Car.Nas.(ter) 1) carico nastriforme 1	[0.00;0.00]
descr. = Sisma_1+1+R_Giu	Car.Pun.(mur) 1) carico testa muro	[0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
SLD_SISMA_SU (SLD)	Car.Nas.(ter) 1) carico nastriforme 1	[0.00;0.00]
descr. = Sisma_1+1+R_Su	Car.Pun.(mur) 1) carico testa muro	[0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
SLD_SISMA_GIU (SLD)	Car.Nas.(ter) 1) carico nastriforme 1	[0.00;0.00]
descr. = Sisma_1+1+R_Giu	Car.Pun.(mur) 1) carico testa muro	[0.00;0.00]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
STR_ECCEZIONALE (SLU)	Car.Nas.(ter) 1) carico nastriforme 1	[0.00; -]
descr. = SLU_Str_Eccezionale (appr.2)	Car.Pun.(mur) 1) carico testa muro	[1.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
GEO_ECCEZIONALE (SLU_GEO)	Car.Nas.(ter) 1) carico nastriforme 1	[0.00; -]
descr. = SLU_Geo_Eccezionale (appr.2)	Car.Pun.(mur) 1) carico testa muro	[1.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
EQU_ECCEZIONALE (SLU_EQU)	Car.Nas.(ter) 1) carico nastriforme 1	[0.00; -]
descr. = SLU_Equ_Eccezionale (per equilibrio)	Car.Pun.(mur) 1) carico testa muro	[1.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
RARA (Caratteristica)	Car.Nas.(ter) 1) carico nastriforme 1	[1.00; -]
descr. = SLE caratteristica (rara)	Car.Pun.(mur) 1) carico testa muro	[0.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
FREQ. (Frequente)	Car.Nas.(ter) 1) carico nastriforme 1	[1.00; -]
descr. = SLE frequente	Car.Pun.(mur) 1) carico testa muro	[0.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
Q.PERM. (Quasi_Perm)	Car.Nas.(ter) 1) carico nastriforme 1	[1.00; -]
descr. = SLE quasi permanente	Car.Pun.(mur) 1) carico testa muro	[0.00; -]
coeff. = 1(pp.), 1(ter.m.), 1(fld.m.)1(ter.cs.), 1(fld.cs.)		
	•	

Casi di Carico

- Armatura

- Muro e fondazione con esplosi


- Verifiche Geotecniche


Viene valutata la portata di ogni singolo palo:

	palo (n° fila)		~			fs >1;<1			fs >1;<1
1 - STR (SLU)	1	-58207.4	63332.5	1.09	-8001.3	-	14172.2	100287.9	7.08
1 - STR (SLU)	2	-54139.7	63332.5	1.17	-8001.3	-	14170.7	100287.9	7.08
3 - SLV_SISMA_	1	-35601.6	63332.5	1.78	-8001.3	-	8657.9	100287.9	11.58

SU (SLV)									
3 - SLV_SISMA_ SU (SLV)	2	-33399.7	63332.5	1.9	-8001.3	-	8657.4	100287.9	11.58
4 - SLV_SISMA_ GIU (SLV)	1	-37919.8	63332.5	1.67	-8001.3	1	9044.5	100287.9	11.09
4 - SLV_SISMA_ GIU (SLV)	2	-35677.3	63332.5	1.78	-8001.3	1	9044	100287.9	11.09
5 - SLD_SISMA_ SU (SLD)	1	-35555.5	63332.5	1.78	-8001.3	1	6953	100287.9	14.42
5 - SLD_SISMA_ SU (SLD)	2	-33830	63332.5	1.87	-8001.3	1	6952.5	100287.9	14.42
6 - SLD_SISMA_ GIU (SLD)	1	-36683.1	63332.5	1.73	-8001.3	1	7161.4	100287.9	14
6 - SLD_SISMA_ GIU (SLD)	2	-34865.1	63332.5	1.82	-8001.3	-	7161	100287.9	14
7 - STR_ECCEZI ONALE (SLU)	1	-43965.2	63332.5	1.44	-8001.3	-	15983.4	100287.9	6.27
7 - STR_ECCEZI ONALE (SLU)	2	-29405.9	63332.5	2.15	-8001.3	-	15980.3	100287.9	6.28

Portate dei singoli pali.

Dettaglio della verifica di stabilità globale.

- <u>- Verifiche Strutturali</u>- Diagrammi delle Spinte e Pressioni
- Caso 1 (STR [SLU] SLU A1+M1+R3)

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0	0	
0	0.074	0	
-18.5	0.078	137	
-37	0.088	289	
-55.5	0.101	462	
-74	0.112	661	
-92.5	0.124	877	
-111	0.138	1120	
-129.5	0.16	1386	
-148	0.184	1710	
-166.5	0.201	2069	
-185	0.209	2455	

Forze e Pressioni lungo il paramento verticale, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)

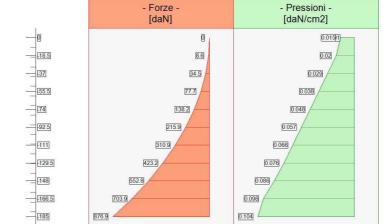
Forze (totali) e Pressioni lungo il fusto, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)

- attacco fusto fondazione, forza orizzontale = 2 455 [daN]
- attacco fusto fondazione, forza verticale = 834 [daN]
- altezza totale, forza orizzontale = 3 543 [daN]
- altezza totale, forza verticale = 980 [daN]
- Caso 2 (GEO [SLU_GEO] SLU A2+M2+R2)

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0	0	
0	0.077	0	
-18.5	0.081	143	
-37	0.091	300	
-55.5	0.102	479	
-74	0.114	678	
-92.5	0.125	899	
-111	0.144	1141	
-129.5	0.166	1432	
-148	0.183	1755	
-166.5	0.197	2109	
-185	0.203	2484	

Forze e Pressioni lungo il paramento verticale, per il Caso 2 (GEO [SLU_GEO] - SLU A2+M2+R2)

Forze (totali) e Pressioni lungo il fusto, per il Caso 2 (GEO [SLU_GEO] - SLU A2+M2+R2)

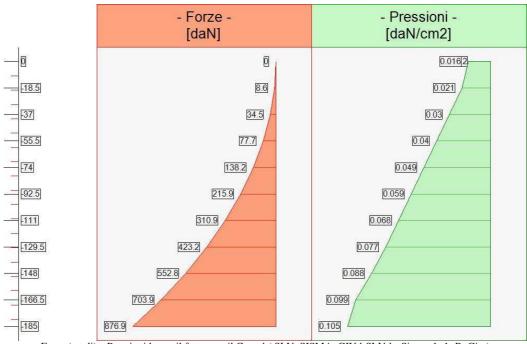

15

Risultante delle spinte sul muro (valori da intendersi a modulo di calcolo (100.0 [cm])):

- attacco fusto fondazione, forza orizzontale = 2 484 [daN]
- attacco fusto fondazione, forza verticale = 686 [daN]
- altezza totale, forza orizzontale = 3 526 [daN]
- altezza totale, forza verticale = 788 [daN]
- Caso 3 (SLV_SISMA_SU [SLV] Sisma_1+1+R_Su)

Elevazione		
quota	Pressioni	Forze
[cm]	[daN/cm2]	[daN]
0	0.01	0
0	0.015	0
-18.5	0.02	9
-37	0.029	35
-55.5	0.038	78
-74	0.048	138
-92.5	0.057	216
-111	0.066	311
-129.5	0.076	423
-148	0.086	553
-166.5	0.098	704
-185	0.104	877

Forze e Pressioni lungo il paramento verticale, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

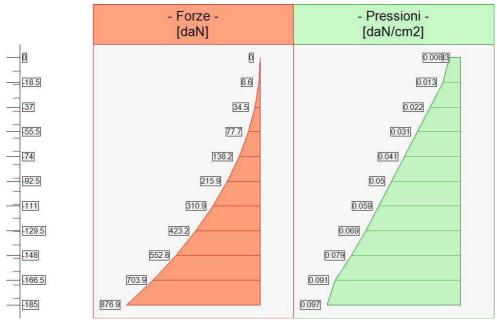

Forze (totali) e Pressioni lungo il fusto, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

- attacco fusto fondazione, forza orizzontale = 1 067 [daN]
- attacco fusto fondazione, forza verticale = 363 [daN]
- altezza totale, forza orizzontale = 1 870 [daN]
- altezza totale, forza verticale = 556 [daN]

- Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0.012	0	
0	0.016	0	
-18.5	0.021	9	
-37	0.03	35	
-55.5	0.04	78	
-74	0.049	138	
-92.5	0.059	216	
-111	0.068	311	
-129.5	0.077	423	
-148	0.088	553	
-166.5	0.099	704	
-185	0.105	877	

Forze e Pressioni lungo il paramento verticale, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

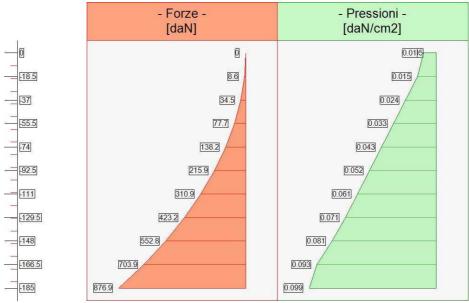


Forze (totali) e Pressioni lungo il fusto, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

- attacco fusto fondazione, forza orizzontale = 1 095 [daN]
- attacco fusto fondazione, forza verticale = 372 [daN]
- altezza totale, forza orizzontale = 1 967 [daN]
- altezza totale, forza verticale = 584 [daN]
- Caso 5 (SLD_SISMA_SU [SLD] Sisma_1+1+R_Su)

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0.003	0	
0	0.008	0	
-18.5	0.013	9	
-37	0.022	35	
-55.5	0.031	78	
-74	0.041	138	
-92.5	0.05	216	
-111	0.059	311	
-129.5	0.069	423	
-148	0.079	553	
-166.5	0.091	704	
-185	0.097	877	

Forze e Pressioni lungo il paramento verticale, per il Caso 5 (SLD_SISMA_SU [SLD] - Sisma_1+1+R_Su)

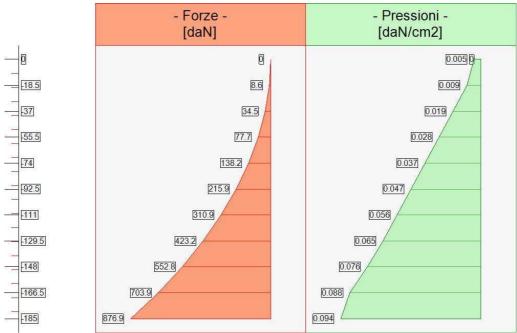


Forze (totali) e Pressioni lungo il fusto, per il Caso 5 (SLD_SISMA_SU [SLD] - Sisma_1+1+R_Su)

- attacco fusto fondazione, forza orizzontale = 941 [daN]
- attacco fusto fondazione, forza verticale = 320 [daN]
- altezza totale, forza orizzontale = 1 591 [daN]
- altezza totale, forza verticale = 468 [daN]
- Caso 6 (SLD_SISMA_GIU [SLD] Sisma_1+1+R_Giu)

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0.005	0	
0	0.01	0	
-18.5	0.015	9	
-37	0.024	35	
-55.5	0.033	78	
-74	0.043	138	
-92.5	0.052	216	
-111	0.061	311	
-129.5	0.071	423	
-148	0.081	553	
-166.5	0.093	704	
-185	0.099	877	

Forze e Pressioni lungo il paramento verticale, per il Caso 6 (SLD_SISMA_GIU [SLD] - Sisma_1+1+R_Giu)



Forze (totali) e Pressioni lungo il fusto, per il Caso 6 (SLD_SISMA_GIU [SLD] - Sisma_1+1+R_Giu)

- attacco fusto fondazione, forza orizzontale = 974 [daN]
- attacco fusto fondazione, forza verticale = 331 [daN]
- altezza totale, forza orizzontale = 1 644 [daN]
- altezza totale, forza verticale = 465 [daN]
- Caso 7 (STR_ECCEZIONALE [SLU] SLU_Str_Eccezionale (appr.2))

Elevazione		
quota	Pressioni	Forze
[cm]	[daN/cm2]	[daN]
0	0	0
0	0.005	0
-18.5	0.009	9
-37	0.019	35
-55.5	0.028	78
-74	0.037	138
-92.5	0.047	216
-111	0.056	311
-129.5	0.065	423
-148	0.076	553
-166.5	0.088	704
-185	0.094	877

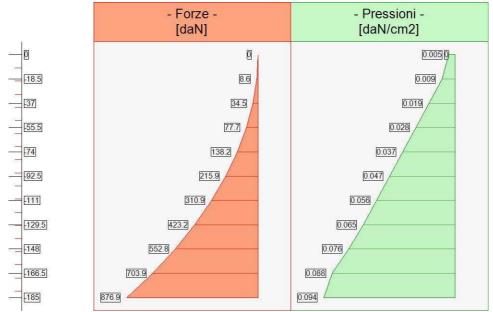
Forze e Pressioni lungo il paramento verticale, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

Forze (totali) e Pressioni lungo il fusto, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

- attacco fusto fondazione, forza orizzontale = 877 [daN]
- attacco fusto fondazione, forza verticale = 298 [daN]
- altezza totale, forza orizzontale = 1 495 [daN]
- altezza totale, forza verticale = 423 [daN]
- Caso 8 (GEO_ECCEZIONALE [SLU_GEO] SLU_Geo_Eccezionale (appr.2))

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0	0	
0	0.006	0	
-18.5	0.012	11	
-37	0.023	43	
-55.5	0.035	96	
-74	0.046	171	
-92.5	0.058	267	
-111	0.069	385	
-129.5	0.082	524	
-148	0.096	688	
-166.5	0.11	878	
-185	0.116	1094	

Forze e Pressioni lungo il paramento verticale, per il Caso 8 (GEO_ECCEZIONALE [SLU_GEO] - SLU_Geo_Eccezionale (appr.2))



Forze (totali) e Pressioni lungo il fusto, per il Caso 8 (GEO_ECCEZIONALE [SLU_GEO] - SLU_Geo_Eccezionale (appr.2))

- attacco fusto fondazione, forza orizzontale = 1 094 [daN]
- attacco fusto fondazione, forza verticale = 302 [daN]
- altezza totale, forza orizzontale = 2 008 [daN]
- altezza totale, forza verticale = 484 [daN]
- Caso 9 (EQU_ECCEZIONALE [SLU_EQU] SLU_Equ_Eccezionale (per equilibrio))

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0	0	
0	0.005	0	
-18.5	0.009	9	
-37	0.019	35	
-55.5	0.028	78	
-74	0.037	138	
-92.5	0.047	216	
-111	0.056	311	
-129.5	0.065	423	
-148	0.076	553	
-166.5	0.088	704	
-185	0.094	877	

Forze e Pressioni lungo il paramento verticale, per il Caso 9 (EQU_ECCEZIONALE [SLU_EQU] - SLU_Equ_Eccezionale (per equilibrio))

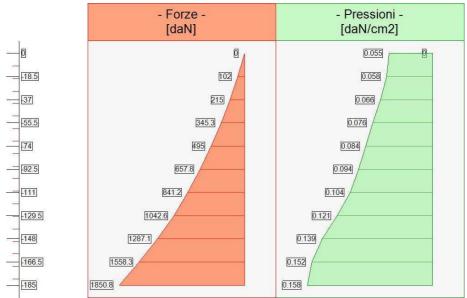


Forze (totali) e Pressioni lungo il fusto, per il Caso 9 (EQU_ECCEZIONALE [SLU_EQU] - SLU_Equ_Eccezionale (per equilibrio))

- attacco fusto fondazione, forza orizzontale = 877 [daN]
- attacco fusto fondazione, forza verticale = 298 [daN]
- altezza totale, forza orizzontale = 1 495 [daN]
- altezza totale, forza verticale = 423 [daN]
- Caso 10 (RARA [Caratteristica] SLE caratteristica (rara))

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0	0	
0	0.055	0	
-18.5	0.058	102	
-37	0.066	215	
-55.5	0.076	345	
-74	0.084	495	
-92.5	0.094	658	
-111	0.104	841	
-129.5	0.121	1043	
-148	0.139	1287	
-166.5	0.152	1558	
-185	0.158	1851	

Forze e Pressioni lungo il paramento verticale, per il Caso 10 (RARA [Caratteristica] - SLE caratteristica (rara))



Forze (totali) e Pressioni lungo il fusto, per il Caso 10 (RARA [Caratteristica] - SLE caratteristica (rara))

- attacco fusto fondazione, forza orizzontale = 1 851 [daN]
- attacco fusto fondazione, forza verticale = 629 [daN]
- altezza totale, forza orizzontale = 2 680 [daN]
- altezza totale, forza verticale = 741 [daN]
- Caso 11 (FREQ. [Frequente] SLE frequente)

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0	0	
0	0.055	0	
-18.5	0.058	102	
-37	0.066	215	
-55.5	0.076	345	
-74	0.084	495	
-92.5	0.094	658	
-111	0.104	841	
-129.5	0.121	1043	
-148	0.139	1287	
-166.5	0.152	1558	
-185	0.158	1851	

Forze e Pressioni lungo il paramento verticale, per il Caso 11 (FREQ. [Frequente] - SLE frequente)

Forze (totali) e Pressioni lungo il fusto, per il Caso 11 (FREQ. [Frequente] - SLE frequente)

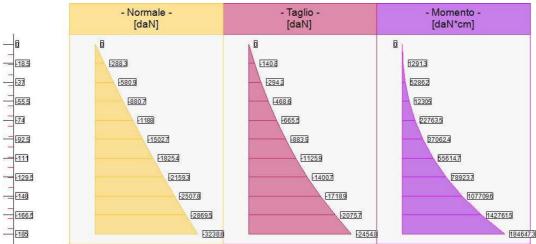
- attacco fusto fondazione, forza orizzontale = 1 851 [daN]
- attacco fusto fondazione, forza verticale = 629 [daN]
- altezza totale, forza orizzontale = 2 680 [daN]
- altezza totale, forza verticale = 741 [daN]
- Caso 12 (Q.PERM. [Quasi_Perm] SLE quasi permanente)

Elevazione			
quota	Pressioni	Forze	
[cm]	[daN/cm2]	[daN]	
0	0	0	
0	0.055	0	
-18.5	0.058	102	
-37	0.066	215	
-55.5	0.076	345	
-74	0.084	495	
-92.5	0.094	658	
-111	0.104	841	
-129.5	0.121	1043	
-148	0.139	1287	
-166.5	0.152	1558	
-185	0.158	1851	

Forze e Pressioni lungo il paramento verticale, per il Caso 12 (Q.PERM. [Quasi_Perm] - SLE quasi permanente)

Forze (totali) e Pressioni lungo il fusto, per il Caso 12 (Q.PERM. [Quasi_Perm] - SLE quasi permanente)

- attacco fusto fondazione, forza orizzontale = 1 851 [daN]
- attacco fusto fondazione, forza verticale = 629 [daN]
- altezza totale, forza orizzontale = 2 680 [daN]
- altezza totale, forza verticale = 741 [daN]
- Diagrammi di Sforzo Normale / Taglio / Momento

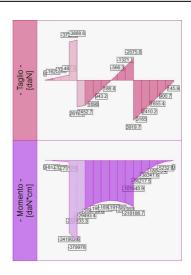

- Caso 1 (STR [SLU] - SLU A1+M1+R3)

Elevazione,	presso-flessione							
quota	Normale	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-
[cm]	[daN]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-
-18.5	-288.3	-140.8	1291.3	•	1244231.9	-740803.3	> 100	Verificato
-37	-580.9	-294.2	5286.2	•	1248989.7	-745896.4	> 100	Verificato
-55.5	-880.7	-468.6	12305	•	1253869.9	-751115.3	> 100	Verificato
-74	-1188	-665.5	22763.5	•	1258879.6	-756471.1	55.3	Verificato
-92.5	-1502.7	-883.9	37062.4	•	1290237.6	-1310536.5	34.81	Verificato
-111	-1825.4	-1125.9	55614.7	•	2321437.7	-1378621.4	41.74	Verificato
-129.5	-2159.3	-1400.7	78923.7	•	2326717.7	-1384323.2	29.48	Verificato
-148	-2507.8	-1718.9	107709.6	•	2332232.2	-1390274.6	21.65	Verificato
-166.5	-2869.5	-2075.7	142761.5	•	1286395.1	-785822.2	9.01	Verificato
-185	-3238.8	-2454.8	184647.3	•	1292460.5	-792276.8	7	Verificato

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)

Elevazione,	taglio						
quota	Normale	Taglio	Momento	•	Tag.Res.	FS	-
[cm]	[daN]	[daN]	[daN*cm]	•	[daN]	>1/<1	-
-18.5	-288.3	-140.8	1291.3	•	15362.8	> 100	Verificato
-37	-580.9	-294.2	5286.2	•	15362.8	52.23	Verificato
-55.5	-880.7	-468.6	12305	•	15362.8	32.78	Verificato
-74	-1188	-665.5	22763.5	•	15362.8	23.08	Verificato
-92.5	-1502.7	-883.9	37062.4	•	15362.8	17.38	Verificato
-111	-1825.4	-1125.9	55614.7	•	17241.1	15.31	Verificato
-129.5	-2159.3	-1400.7	78923.7	•	17241.1	12.31	Verificato
-148	-2507.8	-1718.9	107709.6	•	17241.1	10.03	Verificato
-166.5	-2869.5	-2075.7	142761.5	•	15362.8	7.4	Verificato
-185	-3238.8	-2454.8	184647.3	•	15362.8	6.26	Verificato

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)


Sollecitazioni lungo il fusto, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)

Fondazione	, flessione						
quota	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-
[cm]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-
-40	-162.5	-812.5	•	1106568.8	-1451716.7	> 100	Verificato
0	2452.7	-229493.4	•	1092930.5	-1438277.9	6.27	Verificato
10	1698	-208739.8	•	1092930.5	-1438277.9	6.89	Verificato
20	943.2	-195533.9	•	1092930.5	-1438277.9	7.36	Verificato
30	188.4	-189875.6	•	1092930.5	-1438277.9	7.57	Verificato
40	-566.3	-191765	•	1092930.5	-1438277.9	7.5	Verificato
50	-1321.1	-201202	•	1092930.5	-1438277.9	7.15	Verificato
60	-2075.8	-218186.7	•	1092930.5	-1438277.9	6.59	Verificato
60	3919.7	-101640.9	•	1128292.6	-1473123.7	14.49	Verificato
70	3165	-66217.5	•	1128292.6	-1473123.7	22.25	Verificato
80	2410.2	-38341.6	•	1128292.6	-1473123.7	38.42	Verificato
90	1655.4	-18013.4	•	1128292.6	-1473123.7	81.78	Verificato
100	900.7	-5232.9	•	1128292.6	-1473123.7	> 100	Verificato

Taglio e Momento lungo la mensola di fondazione, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)

quota	Taglio	Momento	•	Tag.Res.	FS	-
[cm]	[daN]	[daN*cm]	•	[daN]	>1/<1	-
-40	-162.5	-812.5	•	16910.4	> 100	Verificato
0	2452.7	-229493.4	•	16910.4	6.89	Verificato
10	1698	-208739.8	•	16910.4	9.96	Verificato
20	943.2	-195533.9	•	16910.4	17.93	Verificato
30	188.4	-189875.6	•	16910.4	89.74	Verificato
40	-566.3	-191765	•	16910.4	29.86	Verificato
50	-1321.1	-201202	•	16910.4	12.8	Verificato
60	-2075.8	-218186.7	•	16910.4	8.15	Verificato
60	3919.7	-101640.9	•	16910.4	4.31	Verificato
70	3165	-66217.5	•	16910.4	5.34	Verificato
80	2410.2	-38341.6	•	16910.4	7.02	Verificato
90	1655.4	-18013.4	•	16910.4	10.22	Verificato
100	900.7	-5232.9	•	16910.4	18.78	Verificato

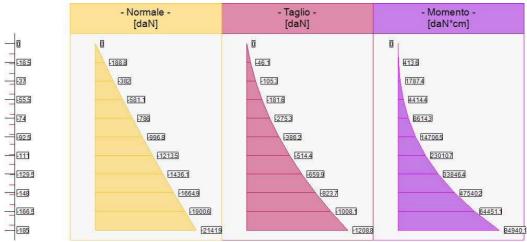
Taglio e Momento lungo la mensola di fondazione, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)

84886888858885

Sollecitazioni in fondazione, per il Caso 1 (STR [SLU] - SLU A1+M1+R3)

- Caso 2 (GEO [SLU_GEO] - SLU A2+M2+R2)

Nessuna verifica per questo Caso di Carico.

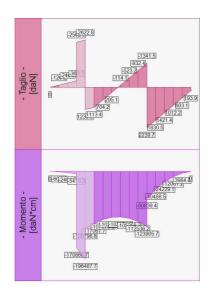

- Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

Elevazione,	presso-flessione							
quota	Normale	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-
[cm]	[daN]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-
-18.5	-188.8	-46.1	413.6	•	1242615.3	-739073.7	> 100	Verificato
-37	-382	-105.3	1787.4	•	1245754.8	-742433.5	> 100	Verificato
-55.5	-581.1	-181.6	4414.4	•	1248991.6	-745900.1	> 100	Verificato
-74	-786	-275.3	8614.3	•	1252329.4	-749468.1	> 100	Verificato
-92.5	-996.8	-386.2	14706.5	•	1281665.4	-1301978.3	87.15	Verificato
-111	-1213.5	-514.4	23010.7	•	2311496.2	-1368168.5	> 100	Verificato
-129.5	-1436.1	-659.9	33846.4	•	2315146.7	-1371970.6	68.4	Verificato
-148	-1664.9	-823.7	47540.2	•	2318898.6	-1375880.2	48.78	Verificato
-166.5	-1900.6	-1008.1	64451.1	•	1270518.4	-768899.3	19.71	Verificato
-185	-2141.9	-1208.8	84940.1	•	1274468.1	-773111.6	15	Verificato

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

Elevazione, t	Elevazione, taglio										
quota	Normale	Taglio	Momento	•	Tag.Res.	FS	-				
[cm]	[daN]	[daN]	[daN*cm]	•	[daN]	>1/<1	-				
-18.5	-188.8	-46.1	413.6	•	15362.8	> 100	Verificato				
-37	-382	-105.3	1787.4	•	15362.8	> 100	Verificato				
-55.5	-581.1	-181.6	4414.4	•	15362.8	84.58	Verificato				
-74	-786	-275.3	8614.3	•	15362.8	55.81	Verificato				
-92.5	-996.8	-386.2	14706.5	•	15362.8	39.78	Verificato				
-111	-1213.5	-514.4	23010.7	•	17241.1	33.52	Verificato				
-129.5	-1436.1	-659.9	33846.4	•	17241.1	26.13	Verificato				
-148	-1664.9	-823.7	47540.2	•	17241.1	20.93	Verificato				
-166.5	-1900.6	-1008.1	64451.1	•	15362.8	15.24	Verificato				
-185	-2141.9	-1208.8	84940.1	•	15362.8	12.71	Verificato				

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)


Sollecitazioni lungo il fusto, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

Fondazione	, flessione						
quota	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-
[cm]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-
-40	-120.2	-601.1	•	1106381	-1451531	> 100	Verificato
0	1113.4	-117061.7	•	1103089.6	-1448289.6	12.37	Verificato
10	704.2	-107973.5	•	1102901.9	-1448101.1	13.41	Verificato
20	295.1	-102976.9	•	1102710.6	-1447912.6	14.06	Verificato
30	-114.1	-102071.8	•	1102519.3	-1447727.3	14.18	Verificato
40	-523.2	-105258.2	•	1102328	-1447538.8	13.75	Verificato
50	-932.4	-112536.2	•	1102136.7	-1447350.4	12.86	Verificato
60	-1341.5	-123905.7	•	1101949.1	-1447165.1	11.68	Verificato
60	2239.7	-60839.4	•	1123553.5	-1468451.2	24.14	Verificato
70	1830.5	-40488.5	•	1123360.9	-1468264.2	36.26	Verificato
80	1421.4	-24229.1	•	1123172.1	-1468077.1	60.59	Verificato
90	1012.2	-12061.2	•	1122979.6	-1467886.9	> 100	Verificato
100	603.1	-3984.8	•	1122790.8	-1467699.9	> 100	Verificato

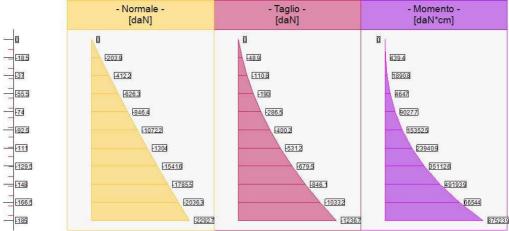
Taglio e Momento lungo la mensola di fondazione, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

Fondazione, i	-0					
quota	Taglio	Momento	•	Tag.Res.	FS	-
[cm]	[daN]	[daN*cm]	•	[daN]	>1/<1	-
-40	-120.2	-601.1	•	16910.4	> 100	Verificato
0	1113.4	-117061.7	•	16910.4	15.19	Verificato
10	704.2	-107973.5	•	16910.4	24.01	Verificato
20	295.1	-102976.9	•	16910.4	57.31	Verificato
30	-114.1	-102071.8	•	16910.4	> 100	Verificato
40	-523.2	-105258.2	•	16910.4	32.32	Verificato
50	-932.4	-112536.2	•	16910.4	18.14	Verificato
60	-1341.5	-123905.7	•	16910.4	12.61	Verificato
60	2239.7	-60839.4	•	16910.4	7.55	Verificato
70	1830.5	-40488.5	•	16910.4	9.24	Verificato
80	1421.4	-24229.1	•	16910.4	11.9	Verificato
90	1012.2	-12061.2	•	16910.4	16.71	Verificato
100	603.1	-3984.8	•	16910.4	28.04	Verificato

Taglio e Momento lungo la mensola di fondazione, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

9997F = 2229 B B B B B B B

Sollecitazioni in fondazione, per il Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

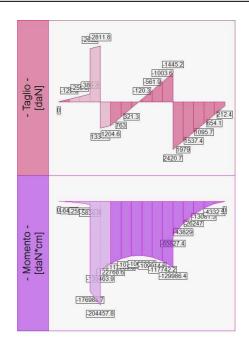

- Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

Elevazione,	, presso-flessione							
quota	Normale	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-
cm]	[daN]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-
-18.5	-203.9	-48.9	439.4	•	1242860.3	-739335.4	> 100	Verificato
-37	-412.2	-110.8	1890.8	•	1246244.8	-742957.5	> 100	Verificato
-55.5	-626.3	-190	4647	•	1249728.5	-746686.8	> 100	Verificato
-74	-846.4	-286.5	9027.7	•	1253309.8	-750518.3	> 100	Verificato
-92.5	-1072.2	-400.2	15352.5	•	1282943.3	-1303253.7	83.57	Verificato
-111	-1304	-531.2	23940.9	•	2312982.3	-1369714.7	96.61	Verificato
-129.5	-1541.6	-679.5	35112.6	•	2316880.8	-1373775.4	65.98	Verificato
-148	-1785.5	-846.1	49193.9	•	2320806.9	-1377939.5	47.18	Verificato
-166.5	-2036.3	-1033.2	66544	•	1272737.3	-771265.9	19.13	Verificato
-185	-2292.7	-1236.7	87523.9	•	1276937.4	-775744.2	14.59	Verificato

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

Elevazione,	Elevazione, taglio										
quota	Normale	Taglio	Momento	•	Tag.Res.	FS	-				
[cm]	[daN]	[daN]	[daN*cm]	•	[daN]	>1/<1	-				
-18.5	-203.9	-48.9	439.4	•	15362.8	> 100	Verificato				
-37	-412.2	-110.8	1890.8	•	15362.8	> 100	Verificato				
-55.5	-626.3	-190	4647	•	15362.8	80.85	Verificato				
-74	-846.4	-286.5	9027.7	•	15362.8	53.63	Verificato				
-92.5	-1072.2	-400.2	15352.5	•	15362.8	38.39	Verificato				
-111	-1304	-531.2	23940.9	•	17241.1	32.46	Verificato				
-129.5	-1541.6	-679.5	35112.6	•	17241.1	25.37	Verificato				
-148	-1785.5	-846.1	49193.9	•	17241.1	20.38	Verificato				
-166.5	-2036.3	-1033.2	66544	•	15362.8	14.87	Verificato				
-185	-2292.7	-1236.7	87523.9	•	15362.8	12.42	Verificato				

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)


Sollecitazioni lungo il fusto, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

Fondazione	, flessione						
quota	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-
[cm]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-
-40	-129.8	-648.9	•	1106381	-1451531	> 100	Verificato
0	1204.6	-122768.6	•	1103498.1	-1448691.7	11.8	Verificato
10	763	-112930.3	•	1103306.7	-1448503.2	12.83	Verificato
20	321.3	-107508.6	•	1103115.4	-1448314.7	13.47	Verificato
30	-120.3	-106503.3	•	1102927.7	-1448126.2	13.6	Verificato
40	-561.9	-109914.6	•	1102736.4	-1447940.9	13.17	Verificato
50	-1003.6	-117742.2	•	1102545	-1447752.4	12.3	Verificato
60	-1445.2	-129986.4	•	1102353.7	-1447564	11.14	Verificato
60	2420.7	-65827.4	•	1124923.7	-1469802.4	22.33	Verificato
70	1979	-43829	•	1124734.8	-1469615.3	33.53	Verificato
80	1537.4	-26247	•	1124542.2	-1469428.1	55.98	Verificato
90	1095.7	-13081.5	•	1124353.3	-1469240.9	> 100	Verificato
100	654.1	-4332.5	•	1124160.8	-1469053.8	> 100	Verificato

Taglio e Momento lungo la mensola di fondazione, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

Fondazione,	taglio					
quota	Taglio	Momento	•	Tag.Res.	FS	-
[cm]	[daN]	[daN*cm]	•	[daN]	>1/<1	-
-40	-129.8	-648.9	•	16910.4	> 100	Verificato
0	1204.6	-122768.6	•	16910.4	14.04	Verificato
10	763	-112930.3	•	16910.4	22.16	Verificato
20	321.3	-107508.6	•	16910.4	52.62	Verificato
30	-120.3	-106503.3	•	16910.4	> 100	Verificato
40	-561.9	-109914.6	•	16910.4	30.09	Verificato
50	-1003.6	-117742.2	•	16910.4	16.85	Verificato
60	-1445.2	-129986.4	•	16910.4	11.7	Verificato
60	2420.7	-65827.4	•	16910.4	6.99	Verificato
70	1979	-43829	•	16910.4	8.54	Verificato
80	1537.4	-26247	•	16910.4	11	Verificato
90	1095.7	-13081.5	•	16910.4	15.43	Verificato
100	654.1	-4332.5	•	16910.4	25.85	Verificato

Taglio e Momento lungo la mensola di fondazione, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

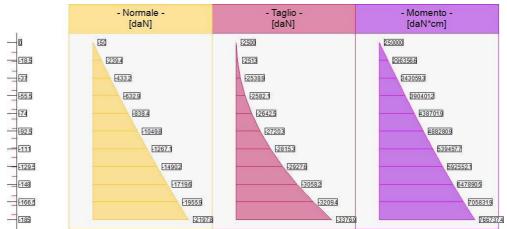
Sollecitazioni in fondazione, per il Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

- Caso 5 (SLD_SISMA_SU [SLD] - Sisma_1+1+R_Su)

Nessuna verifica per questo Caso di Carico.

- Caso 6 (SLD_SISMA_GIU [SLD] - Sisma_1+1+R_Giu)

Nessuna verifica per questo Caso di Carico.

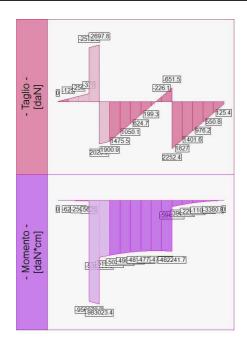

- Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

Elevazione,	Elevazione, presso-flessione									
quota	Normale	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-		
[cm]	[daN]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-		
-18.5	-239.4	-2513	296356.6	•	1243436.9	-739954.1	4.2	Verificato		
-37	-433.2	-2538.9	343059.3	•	1246588.1	-743324.2	3.63	Verificato		
-55.5	-632.9	-2582.1	390401.2	•	1249835	-746801.4	3.2	Verificato		
-74	-838.4	-2642.5	438701.9	•	1253179.4	-750380.4	2.86	Verificato		
-92.5	-1049.8	-2720.3	488280.9	•	1282562.2	-1302872.4	2.63	Verificato		
-111	-1267.1	-2815.3	539457.7	•	2312376	-1369083.2	4.29	Verificato		
-129.5	-1490.2	-2927.6	592552.1	•	2316037.1	-1372896	3.91	Verificato		
-148	-1719.6	-3058.2	647890.5	•	2319764.5	-1376813.2	3.58	Verificato		
-166.5	-1955.9	-3209.4	705831.9	•	1271424.6	-769863.1	1.8	Verificato		
-185	-2197.8	-3376.9	766737.4	•	1275382.4	-774088.2	1.66	Verificato		

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

Elevazione, taglio								
quota	Normale	Taglio	Momento	•	Tag.Res.	FS	-	
[cm]	[daN]	[daN]	[daN*cm]	•	[daN]	>1/<1	-	
-18.5	-239.4	-2513	296356.6	•	15362.8	6.11	Verificato	
-37	-433.2	-2538.9	343059.3	•	15362.8	6.05	Verificato	
-55.5	-632.9	-2582.1	390401.2	•	15362.8	5.95	Verificato	
-74	-838.4	-2642.5	438701.9	•	15362.8	5.81	Verificato	
-92.5	-1049.8	-2720.3	488280.9	•	15362.8	5.65	Verificato	
-111	-1267.1	-2815.3	539457.7	•	17241.1	6.12	Verificato	
-129.5	-1490.2	-2927.6	592552.1	•	17241.1	5.89	Verificato	
-148	-1719.6	-3058.2	647890.5	•	17241.1	5.64	Verificato	
-166.5	-1955.9	-3209.4	705831.9	•	15362.8	4.79	Verificato	
-185	-2197.8	-3376.9	766737.4	•	15362.8	4.55	Verificato	

Sforzo Normale, Taglio e Momento lungo il paramento verticale, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))


Sollecitazioni lungo il fusto, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

Fondazione, flessione									
quota	Taglio	Momento	•	Mom.Res.POS	Mom.Res.NEG	FS	-		
[cm]	[daN]	[daN*cm]	•	[daN*cm]	[daN*cm]	>1/<1	-		
-40	-125	-625	•	1106568.8	-1451716.7	> 100	Verificato		
0	1900.9	-519725.4	•	1079044.3	-1424597.3	2.74	Verificato		
10	1475.5	-502843.2	•	1079044.3	-1424597.3	2.83	Verificato		
20	1050.1	-490214.9	•	1079044.3	-1424597.3	2.91	Verificato		
30	624.7	-481840.6	•	1079044.3	-1424597.3	2.96	Verificato		
40	199.3	-477720.3	•	1079044.3	-1424597.3	2.98	Verificato		
50	-226.1	-477854	•	1079044.3	-1424597.3	2.98	Verificato		
60	-651.5	-482241.7	•	1079044.3	-1424597.3	2.95	Verificato		
60	2252.4	-59444.1	•	1118921	-1463886.9	24.63	Verificato		
70	1827	-39047.3	•	1118921	-1463886.9	37.49	Verificato		
80	1401.6	-22904.5	•	1118921	-1463886.9	63.91	Verificato		
90	976.2	-11015.7	•	1118921	-1463886.9	> 100	Verificato		
100	550.8	-3380.8	•	1118921	-1463886.9	> 100	Verificato		

Taglio e Momento lungo la mensola di fondazione, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

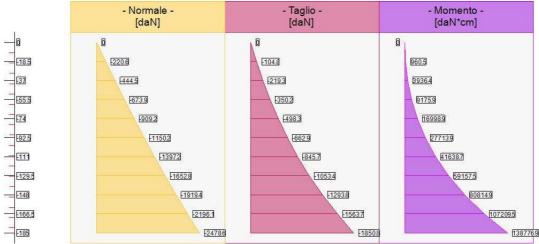
Fondazione,	Fondazione, taglio								
quota	Taglio	Momento	•	Tag.Res.	FS	-			
[cm]	[daN]	[daN*cm]	•	[daN]	>1/<1	-			
-40	-125	-625	•	16910.4	> 100	Verificato			
0	1900.9	-519725.4	•	16910.4	8.9	Verificato			
10	1475.5	-502843.2	•	16910.4	11.46	Verificato			
20	1050.1	-490214.9	•	16910.4	16.1	Verificato			
30	624.7	-481840.6	•	16910.4	27.07	Verificato			
40	199.3	-477720.3	•	16910.4	84.84	Verificato			
50	-226.1	-477854	•	16910.4	74.8	Verificato			
60	-651.5	-482241.7	•	16910.4	25.96	Verificato			
60	2252.4	-59444.1	•	16910.4	7.51	Verificato			
70	1827	-39047.3	•	16910.4	9.26	Verificato			
80	1401.6	-22904.5	•	16910.4	12.07	Verificato			
90	976.2	-11015.7	•	16910.4	17.32	Verificato			
100	550.8	-3380.8	•	16910.4	30.7	Verificato			

Taglio e Momento lungo la mensola di fondazione, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

Sollecitazioni in fondazione, per il Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

- Caso 8 (GEO_ECCEZIONALE [SLU_GEO] - SLU_Geo_Eccezionale (appr.2))

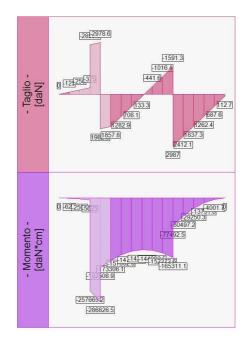
Nessuna verifica per questo Caso di Carico.


- Caso 9 (EQU_ECCEZIONALE [SLU_EQU] - SLU_Equ_Eccezionale (per equilibrio))

Nessuna verifica per questo Caso di Carico.

- Caso 10 (RARA [Caratteristica] - SLE caratteristica (rara))

Elevazione, t	Elevazione, tensioni di esercizio cls, tensioni di esercizio acciaio, apertura fessure								
quota	Tensione Cls	FS	Tensione Acc	FS	Fessure	FS	-		
[cm]	[daN/cm2]	>1/<1	[daN/cm2]	>1/<1	[mm]	>1/<1	-		
-18.5	0.1	> 100	1.2	> 100	0	-	Verificato		
-37	0.3	> 100	3.3	> 100	0	-	Verificato		
-55.5	0.6	> 100	6.9	> 100	0	-	Verificato		
-74	1.2	> 100	17.8	> 100	0.002	-	Verificato		
-92.5	1.9	> 100	43.4	83.04	0.004	-	Verificato		
-111	2.5	> 100	45.6	78.87	0.004	-	Verificato		
-129.5	3.5	> 100	73.6	48.93	0.007	-	Verificato		
-148	4.8	> 100	109.8	32.8	0.011	-	Verificato		
-166.5	8.2	63.95	293.1	12.28	0.032	-	Verificato		
-185	10.6	49.24	401.5	8.97	0.045	-	Verificato		


Tensione nei materiali lungo il paramento verticale, per il Caso 10 (RARA [Caratteristica] - SLE caratteristica (rara))

Sollecitazioni lungo il fusto, per il Caso 10 (RARA [Caratteristica] - SLE caratteristica (rara))

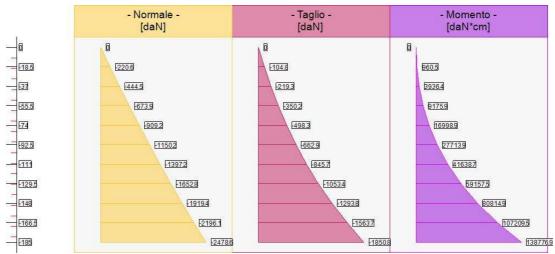
Fondazione,	Fondazione, tensioni di esercizio cls, tensioni di esercizio acciaio									
quota	Tensione Cls	FS	Tensione Acc	FS	-					
[cm]	[daN/cm2]	>1/<1	[daN/cm2]	>1/<1	-					
-40	0	> 100	1.9	> 100	Verificato					
0	8.7	17.15	537.2	6.7	Verificato					
10	7.9	18.85	488.5	7.37	Verificato					
20	7.4	20.13	457.6	7.87	Verificato					
30	7.2	20.72	444.6	8.1	Verificato					
40	7.3	20.5	449.4	8.01	Verificato					
50	7.7	19.51	472	7.63	Verificato					
60	8.3	17.98	512.4	7.03	Verificato					
60	8.3	17.98	512.4	7.03	Verificato					
70	2.5	58.85	156.5	23	Verificato					
80	1.5	> 100	90.7	39.71	Verificato					
90	0.7	> 100	42.6	84.46	Verificato					
100	0.2	> 100	12.4	> 100	Verificato					


Tensione nei materiali lungo la fondazione, per il Caso 10 (RARA [Caratteristica] - SLE caratteristica (rara))

- Caso 11 (FREQ. [Frequente] - SLE frequente)

Elevazione, t	Elevazione, tensioni di esercizio cls, tensioni di esercizio acciaio, apertura fessure								
quota	Tensione Cls	FS	Tensione Acc	FS	Fessure	FS	-		
[cm]	[daN/cm2]	>1/<1	[daN/cm2]	>1/<1	[mm]	>1/<1	-		
-18.5	0.1	-	1.2	-	0	> 100	Verificato		
-37	0.3	-	3.3	-	0	> 100	Verificato		
-55.5	0.6	-	6.9	-	0	> 100	Verificato		
-74	1.2	-	17.8	-	0.002	> 100	Verificato		
-92.5	1.9	-	43.4	-	0.004	95.53	Verificato		
-111	2.5	-	45.6	-	0.004	96.79	Verificato		
-129.5	3.5	-	73.6	-	0.007	57.49	Verificato		
-148	4.8	-	109.8	-	0.011	37.42	Verificato		
-166.5	8.2	-	293.1	-	0.032	12.38	Verificato		
-185	10.6	-	401.5	-	0.045	8.92	Verificato		

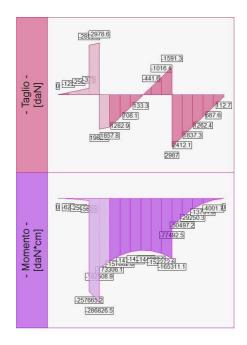
Tensione nei materiali lungo il paramento verticale, per il Caso 11 (FREQ. [Frequente] - SLE frequente)



Sollecitazioni lungo il fusto, per il Caso 11 (FREQ. [Frequente] - SLE frequente)

- Caso 12 (Q.PERM. [Quasi_Perm] - SLE quasi permanente)

Elevazione, tensioni di esercizio cls, tensioni di esercizio acciaio, apertura fessure								
quota	Tensione Cls	FS	Tensione Acc	FS	Fessure	FS	-	
[cm]	[daN/cm2]	>1/<1	[daN/cm2]	>1/<1	[mm]	>1/<1	-	
-18.5	0.1	> 100	1.2	-	0	> 100	Verificato	
-37	0.3	> 100	3.3	-	0	> 100	Verificato	
-55.5	0.6	> 100	6.9	-	0	> 100	Verificato	
-74	1.2	> 100	17.8	-	0.002	> 100	Verificato	
-92.5	1.9	> 100	43.4	-	0.004	71.65	Verificato	
-111	2.5	> 100	45.6	-	0.004	72.59	Verificato	
-129.5	3.5	> 100	73.6	-	0.007	43.12	Verificato	
-148	4.8	82.49	109.8	-	0.011	28.07	Verificato	
-166.5	8.2	47.96	293.1	-	0.032	9.28	Verificato	
-185	10.6	36.93	401.5	-	0.045	6.69	Verificato	


Tensione nei materiali lungo il paramento verticale, per il Caso 12 (Q.PERM. [Quasi_Perm] - SLE quasi permanente)

Sollecitazioni lungo il fusto, per il Caso 12 (Q.PERM. [Quasi_Perm] - SLE quasi permanente)

Fondazione,	ondazione, tensioni di esercizio cls, tensioni di esercizio acciaio								
quota	Tensione Cls	FS	Tensione Acc	FS	-				
[cm]	[daN/cm2]	>1/<1	[daN/cm2]	>1/<1	-				
-40	0	> 100	1.9	-	Verificato				
0	8.7	12.86	537.2	-	Verificato				
10	7.9	14.14	488.5	-	Verificato				
20	7.4	15.09	457.6	-	Verificato				
30	7.2	15.54	444.6	-	Verificato				
40	7.3	15.37	449.4	-	Verificato				
50	7.7	14.64	472	-	Verificato				
60	8.3	13.48	512.4	-	Verificato				
60	8.3	13.48	512.4	-	Verificato				
70	2.5	44.13	156.5	-	Verificato				
80	1.5	76.19	90.7	-	Verificato				
90	0.7	> 100	42.6	-	Verificato				
100	0.2	> 100	12.4	-	Verificato				

Tensione nei materiali lungo la fondazione, per il Caso 12 (Q.PERM. [Quasi_Perm] - SLE quasi permanente)

- Azioni in testa ai pali

- Caso 1 (STR [SLU] - SLU A1+M1+R3)

palo	N [daN]	T [daN]	M [daN*cm]
1	52032.3	14172.2	-1001157.8
2	47964.6	14170.7	-932365.9

- Caso 3 (SLV_SISMA_SU [SLV] - Sisma_1+1+R_Su)

palo	N [daN]	T [daN]	M [daN*cm]
1	30851.5	8657.9	-541527.8
2	28649.6	8657.4	-504529.8

- Caso 4 (SLV_SISMA_GIU [SLV] - Sisma_1+1+R_Giu)

palo	N [daN]	T [daN]	M [daN*cm]
1	33169.8	9044.5	-551951.8
2	30927.2	9044	-513271.8

- Caso 5 (SLD_SISMA_SU [SLD] - Sisma_1+1+R_Su)

palo	N [daN]	T [daN]	M [daN*cm]
1	30805.4	6953	-425304.3
2	29079.9	6952.5	-393909

- Caso 6 (SLD_SISMA_GIU [SLD] - Sisma_1+1+R_Giu)

palo	N [daN]	T [daN]	M [daN*cm]
1	31933	7161.4	-447812.2
2	30115	7161	-415345.7

- Caso 7 (STR_ECCEZIONALE [SLU] - SLU_Str_Eccezionale (appr.2))

palo	N [daN]	T [daN]	M [daN*cm]
1	37790.1	15983.4	-3549309.1
2	23230.8	15980.3	-3382380.3

8. VERIFICA PALI DI FONDAZIONE

La seguente tabella riassume schematicamente tutte le verifiche eseguite nei vari casi di calcolo definiti. Per ciascuna verifica è indicato il confronto tra resistenza di calcolo Rd ed azione di calcolo Sd, ed il relativo coefficiente di sicurezza fs.

Tutti i Puni	utti i Punti maglia (8), Tutti i casi (12), Tutti i sestetti (12)											
Caso			R.Tras. [daN][f.s.]	Sp.Ori.		rdoMHf c 1	C.A.:t.cls. [daN/cm2][f.s.]	C.A.:t.acc. [daN/cm2][f.s.]	C.A.:fes. [mm]			C.A.:P a.tra. [cm]
A1+M1+R	PM1-S1 73891/584 65 = 1.26		PM1-S1 116379/14 172 = 8.21		423/30//1 700244 –	PM1-S1 45768/141 72 = 3.23						
2: SLU A2+M2+R 2												
Sisma_1+1	PM1-S1 73891/357 99 = 2.06		PM1-S1 116379/86 58 = 13.44		3058875/9 85915 =	PM1-S1 45768/865 8 = 5.29				PM1-S1 0.9/0.3 = 2.84	PM1-S1 10 (min 8)	PM1-S1 13 (max 13)
Sisma_1+1	PM1-S1 73891/381 18 = 1.94		PM1-S1 116379/90 44 = 12.87		3089575/1	PM1-S1 45768/904 4 = 5.06				PM1-S1 0.9/0.3 = 2.84	PM1-S1 10 (min 8)	PM1-S1 13 (max 13)
Sisma_1+1 +R_Su	PM1-S1 73891/357 53 = 2.07											
Sisma_1+1	PM1-S1 73891/368 81 = 2.00											

	PM1-S1 73891/442 22 = 1.67		PM1-S1 116379/15 983 = 7.28		4116392/4 066064 –	PM1-S1 45768/159 83 = 2.86				 	
8: SLU_Geo_ Eccezional e (appr.2)										 	
9: SLU_Equ_ Eccezional e (per equilibrio)										 	
10: SLE caratteristic a (rara)		PM2-S1 -30 (max - 40)		PM1-S1 3 (max 40)			149.4/78.8	PM1-S1 3600/1009 = 3.57		 	
11: SLE frequente									PM1-S1 0 (max 0.4)	 	
12: SLE quasi permanente		50)		PM1-S1 3 (max 50)			1.42		PM1-S1 0 (max 0.3)	 	

C.Port. = Capacità portante | Cedim. = Cedimento | R.Tras. = Resistenza trasversale | Sp.Ori. = Spostamento orizzontale | C.A.:M = C.A.: pressoflessione | C.A.:V = C.A.: taglio | C.A.:t.cls. = C.A.: Tens. limite cls | C.A.:t.acc. = C.A.: Tens. limite acciaio | C.A.:fes. = C.A.: apertura fessure | C.A.:% a.lon. = C.A.: % arm. longitudinale | C.A.:D a.tra. = C.A.: diametro arm. trasversale | C.A.:P a.tra. = C.A.: passo arm. trasversale | - - - = Verifica non prevista

Normativa di riferimento.

Sisma.

Azione sismica di progetto.

Per definire l'azione sismica di progetto, viene valutata in riferimento ai dati seguenti (accelerazione di picco, categorie di sottosuolo e condizioni topografiche. Località: *REVIGLIASCO D'ASTI*

[44.85793000,8.15935700]. Longitudine: 0.0000000[°]. Latitudine: 0.0000000[°]. Vita nominale dell'opera: 50.0[anni]. Classe d'uso: II. Categoria topografica: T1. Categoria di sottosuolo: D.

Gli stati limite ultimi sismici adottano i parametri seguenti. Stato limite: *SLV*. F₀: *2.6993*. a_g: *0.4163* [m/s.²]. Si richiede una percentuale minima di armatura longitudinale, per l'intera lunghezza del palo, pari allo *0.30*%. Si richiede una quantità minima di armatura trasversale, per l'intera lunghezza del palo: diametro non inferiore a *8.0* [mm] e passo non inferiore a *8.0* volte il diametro delle barre longitudinali.

Nelle zone dissipative dei pali in c.a., per lo sviluppo di potenziali cerniere plastiche, in particolare per 10.0 diametri dalla testa dei pali, sono previste disposizioni specifiche.

La deformazione dei materiali strutturali è limitata all'interno del campo elastico, per l'intera lunghezza di ciascun palo.

Gli stati limite di esercizio sismici adottano i parametri seguenti. Stato limite: *SLD*. F₀: *2.5979*. a_g: *0.2078* [m/s.²].

Verifica a liquefazione.

Si escludono verifiche a *liquefazione*, perchè il caso in esame rientra almeno in una delle quattro circostanze elencate nello specifico paragrafo [7.11.3.4.2].

Interazione cinematica.

Si trascura l'incremento di sollecitazioni lungo il palo, dovuto all'*interazione cinematica*, perchè il caso in esame non rientra tra quelli previsti nello specifico paragrafo [7.11.5.3.2] (media o alta sismicità, sottosuoli di tipo D o peggiori).

Materiali.

Calcestruzzo.

Tipo	f _{ck} [daN/cm ²]	γ _ε	f _{cd} [daN/cm ²]	E[daN/cm ²]
C25/30 (Cls 1)	249	1.50	141.1	314471.61

Di seguito sono elencate le tensioni massime ammesse in esercizio.

Tipo	$\sigma^{(-)}_{cls, rara}[daN/cm^2]$	$\sigma^{\text{(-)}}_{\text{cls, q.p.}}[\text{daN/cm}^2]$
C25/30 (Cls 1)	149.4	112.05

Condizioni ambientali: a (poco aggressivo) [4.1.2.2.4.3].

Acciaio per C.A.

Tipo	f _{yk} [daN/cm ²]	γs	f _{yd} [daN/cm ²]	E[daN/cm ²]	$\sigma_{acc, rara}[daN/cm^2]$
B450C (Bar 1)	4500	1.15	3913.04	2000000	3600

Il coefficiente di omogeneizzazione, per le verifiche in esercizio, è definito dal rapporto dei moduli elastici dei materiali.

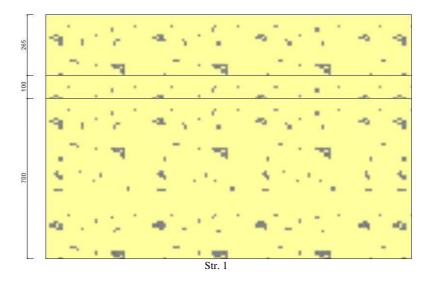
Combinazioni dei carichi.

Tutte le verifiche sono eseguite secondo l'Approccio 2.

Si svolge l'analisi per i seguenti 12 casi di carico.

Caso	Nome	Tipo	Sisma	n° sestetti	Descr.
C1	STR	SLU	No	1	SLU A1+M1+R3
C2	GEO	SLU Geo	No	1	SLU A2+M2+R2
C3	SLV_SISMA_SU	SLV	Si	1	Sisma_1+1+R_Su
C4	SLV_SISMA_GIU	SLV	Si	1	Sisma_1+1+R_Giu
C5	SLD_SISMA_SU	SLD	Si	1	Sisma_1+1+R_Su
C6	SLD_SISMA_GIU	SLD	Si	1	Sisma_1+1+R_Giu
C7	STR ECCEZIONALE	SLU	No	1	SLU_Str_Eccezionale
C/	STK_ECCEZIONALE		INO	1	(appr.2)
C8	GEO ECCEZIONALE	SLU Geo	No	1	SLU_Geo_Eccezionale
Co	GEO_ECCEZIONALE	SLU GCO	140	1	(appr.2)
C9	EQU ECCEZIONALE	Nessuno	No	1	SLU_Equ_Eccezionale
C	EQU_ECCEZIONALE	ressuito	110	1	(per equilibrio)
C10	RARA	Rara	No	1	SLE caratteristica (rara)
C11	FREQ.	Freq	No	1	SLE frequente
C12	Q.PERM.	QPerm	No	1	SLE quasi permanente

Dati del progetto.


Stratigrafia.

Nel calcolo sono utilizzati 3 tipi di terreno, le cui caratteristiche sono di seguito elencate.

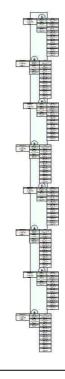
Т1	Non				coesivo
T1	SW - Sabbie a granulome	tria ben assortita o sabbie	ghiaiose con frazione fine	scarsa o assente	
$\gamma_d[daN/cm^3]$	$\gamma_t[daN/cm^3]$	c' _k [daN/cm ²]	$\phi'_{k}[^{\circ}]$	$s_{u,k}[daN/cm^2]$	$q_{u,k}[daN/cm^2]$
0.0015	0.0016	0	21		
E _s [daN/cm ²]	G _s [daN/cm ²]	$V_s[m/s]$	Liquefazione		
250	100	300	Questo terreno non è susc	ettibile di liquefazione.	
Descrizione: Terreno sabl	bioso.				
T2	Coesivo				
12	SW - Sabbie a granulome	tria ben assortita o sabbie	ghiaiose con frazione fine	scarsa o assente	
$\gamma_d[daN/cm^3]$	$\gamma_t[daN/cm^3]$	c' _k [daN/cm ²]	$\phi'_k[^\circ]$	$s_{u,k}[daN/cm^2]$	$q_{u,k}[daN/cm^2]$
0.0018	0.00215	0.4	24	1.05	
E _s [daN/cm ²]	G _s [daN/cm ²]	$V_s[m/s]$	Liquefazione		
250	100	300	Questo terreno non è susc	ettibile di liquefazione.	
Descrizione: Terreno sabl	bioso.				
<i>T</i> 3	Coesivo				
13	SW - Sabbie a granulome	tria ben assortita o sabbie	ghiaiose con frazione fine	scarsa o assente	
$\gamma_d[daN/cm^3]$	$\gamma_t[daN/cm^3]$	c' _k [daN/cm ²]	$\phi'_{k}[^{\circ}]$	$s_{u,k}[daN/cm^2]$	$q_{u,k}[daN/cm^2]$
0.002	0.0022	0.6	28.4	2.2	
E _s [daN/cm ²]	G _s [daN/cm ²]	$V_s[m/s]$	Liquefazione		
250	100	300	Questo terreno non è susc	ettibile di liquefazione.	
Descrizione: Terreno sabl	bioso.				

Seguono le caratteristiche della stratigrafia utilizzata nei calcoli.

	6									
S1	3 strati - Nessuna falda	strati - Nessuna falda								
Strato	Quota[cm]	Altezza[cm]	Terreno							
1	0	265	T1							
2	-265	100	T2							
3	-365	700	Т3							

Punti maglia.

La palificata comprende 8 punti maglia, a ciascuno dei quali corrispondono delle coordinate, un tipo di palo ed i dati del terreno.


Punto	X[cm]	Y[cm]	Palo	β[°]	θ[°]	Rotaz.	Stratig.	SPT	CPT	Descr.
PM1	-10	0	C1	0	0	Impedita	S1	-	-	
PM2	-10	800	C1	0	0	Impedita	S1	-	-	
РМ3	-10	1600	C1	0	0	Impedita	S1	-	-	
PM4	-10	2400	C1	0	0	Impedita	S1	-	-	
PM5	60	400	C1	0	0	Impedita	S1	-	-	
PM6	60	1200	C1	0	0	Impedita	S1	-	-	
<i>PM7</i>	60	2000	C1	0	0	Impedita	S1	-	-	
PM8	60	2800	C1	0	0	Impedita	S1	-	-	

Fondazione.

I pali sono collegati da una fondazione, il cui contorno è definito da 4 vertici.

Vertice	X[cm]	Y[cm]
VI	-50	2845
V2	110	2845
V3	110	-45
V4	-50	-45

Vista in pianta della palificata.

Vista in pianta delle palificata

Azioni.

Le azioni sono applicate direttamente in testa ai pali, espresse rispetto al sistema di riferimento globale.

azioni son	o applicate di							
Punto		Ses.	N _z [daN]	V _x [daN]	V _y [daN]	M _x [daN*cm]	M _y [daN*cm]	T _z [daN*cm]
Punto maglia:								
	SLU A1+M1+R3							
PM1	C1	1	-52032.28	-14172.21	0	0	-1001158	0
	- SLU A2+M2+R2							
PM1	C2	1	-41515.22	-14103.44	0	0	-1072335	0
	SISMA_SU - Sism	a_1+1+R_Su	•	1	r		1	,
PM1	C3	1	-30851.48	-8657.87	0	0	-541528	0
	SISMA_GIU - Sisi	na_1+1+R_Giu	T	T	T-	1.	T = = - = =	т.
PM1	C4	1	-33169.76	-9044.45	0	0	-551952	0
	SISMA_SU - Sism	<u>a_1+1+R_Su</u>	12000520	1 <0.50.05	lo.	Io.	125201	In .
PM1	C5	l	-30805.39	-6952.95	0	0	-425304	0
	SISMA_GIU - Sisi	ma_I+I+R_Giu	21022.07	7161 42	lo.	Io.	147012	In .
PM1	C6	GLE G. F.	-31932.97	-7161.43	0	0	-447812	0
	ECCEZIONALE -	SLU_Str_Eccezi		15002.4	0	lo	2540200	h
PM1	C7	GIV. C. F.	-37790.08	-15983.4	0	0	-3549309	0
	ECCEZIONALE	- SLU_Geo_Ecce			0	lo.	2651062	h
PM1	C8	CIU E E	-38243.23	-18031.93	0	0	-3651963	0
PM1	<u>ECCEZIONALE</u> -	- SLU_Equ_Ecce	-37790.08	-15983.4	0	0	-3549309	0
		[1	-37790.08	-13963.4	υ	U	-3349309	υ
	C10	cu (rara) 1	-39691.22	-10719.47	0	0	-754541	0
PM1	Q SLE frequente	l _T	-39091.22	-10/17.4/	μ	μ	F/J4J41	μ
PM1	C11	1	-39691.22	-10719.47	0	0	-754541	0
	RM SLE quasi p	ormanonto	-33031.22	-10/19.4/	ν	μ	F134341	ν
PM1	C12	1	-39691.22	-10719.47	0	0	-754541	0
Punto maglia:		l _T	-37071.22	-10/17.4/	μ	μ	F/J4J4I	ν
	SLU A1+M1+R3							
PM2	C1	1	-52032.28	-14172.21	0	0	-1001158	0
	- <i>SLU A2+M2+R2</i>	11	-32032.20	-1-172.21	Ю	U	F1001130	р
PM2	C2	1	-41515.22	-14103.44	0	0	-1072335	0
	SISMA_SU - Sism	a 1+1+R Su	+1313.22	14105.44	O	Į0	1072333	φ
PM2	C3	1	-30851.48	-8657.87	0	0	-541528	0
	SISMA_GIU - Sisi	na 1+1+R Giu	30031.40	0037.07	O	Į0	341320	φ
PM2	C4	1	-33169.76	-9044.45	0	0	-551952	0
	SISMA_SU - Sism	a 1+1+R Su	33107.70	7044.43	Į.	Ιο	331732	ρ
PM2	C5	1	-30805.39	-6952.95	0	0	-425304	0
	SISMA_GIU - Sisi	ma 1+1+R Giu	20002.25	0,02.,0		o .	.2000.	Į ^v
PM2	C6	1	-31932.97	-7161.43	0	0	-447812	0
	ECCEZIONALE -	SLU Str Eccezi		,1011.15		o .		Į ^v
PM2	C7	1	-37790.08	-15983.4	0	0	-3549309	0
	ECCEZIONALE -	- SLU Geo Ecce		10,00		Įo.	201,200	I _e
PM2	C8	1	-38243.23	-18031.93	0	0	-3651963	0
	ECCEZIONALE	SLU Eau Ecce			1.	II.		<u> </u>
PM2	C9	1	-37790.08	-15983.4	0	0	-3549309	0
	- SLE caratteristi	ca (rara)			1			1
PM2	C10	1	-39691.22	-10719.47	0	0	-754541	0
	2 SLE frequente	1	•				· ·	
PM2	C11	1	-39691.22	-10719.47	0	0	-754541	0
	RM SLE quasi p	ermanente			1			1
PM2	C12	1	-39691.22	-10719.47	0	0	-754541	0
Punto maglia:		•			•	•	•	•
	SLU A1+M1+R3							
PM3	C1	1	-52032.28	-14172.21	0	0	-1001158	0
Caso: GEO	- SLU A2+M2+R2				II.		10	II
PM3	C2	1	-41515.22	-14103.44	0	0	-1072335	0
	SISMA_SU - Sism	a_1+1+R Su	•			•		<u>.</u>
PM3	C3	1	-30851.48	-8657.87	0	0	-541528	0
	SISMA_GIU - Sisi	na_1+1+R Giu			•	•		•
PM3	C4	1	-33169.76	-9044.45	0	0	-551952	0
	SISMA_SU - Sism	a 1+1+R Su			1			1
PM3	C5	1	-30805.39	-6952.95	0	0	-425304	0
	SISMA_GIU - Sisi	na 1+1+R Giu			1			1
PM3	C6	1	-31932.97	-7161.43	0	0	-447812	0
	ECCEZIONALE -	SLU Str Ecceri			I.	п-	,	1*
PM3	C7	1	-37790.08	-15983.4	0	0	-3549309	0
	ECCEZIONALE -	- SLU Geo Ecce		1	1-	Π-	122.2202	I.
PM3	C8	1	-38243.23	-18031.93	0	0	-3651963	0
		1	1 2 2 - 12 - 22	1	1-	1-	1	1"

I Caso POU ECCETIONAL	E CHUE P.	anzionala (mar	avilibuio)				
PM3 C9	E - SLU_Equ_Ec	-37790.08	-15983.4	0	0	-3549309	0
Caso: RARA - SLE caratteri	 istica (rara)	37770.00	13703.4	V	υ	3377307	Ρ
PM3 C10	1	-39691.22	-10719.47	0	0	-754541	0
Caso: FREQ SLE frequen	te						
PM3 C11	1	-39691.22	-10719.47	0	0	-754541	0
PM3 C12	i permanente	-39691.22	-10719.47	0	0	-754541	0
Punto maglia:Punto 4		-39091.22	-10/19.47	υ		-/34341	U
Caso: STR - SLU A1+M1+R	23						
PM4 C1	1	-52032.28	-14172.21	0	0	-1001158	0
Caso: GEO - SLU A2+M2+M	<u>R2</u>	144545.00	1440244	lo lo	lo.	11052225	lo
PM4 C2 Caso: SLV_SISMA_SU - Six		-41515.22	-14103.44	0	0	-1072335	0
PM4 C3	<u> </u>	-30851.48	-8657.87	0	0	-541528	0
Caso: SLV_SISMA_GIU - S	isma_1+1+R_Giu		[000 / 10 /	I*		10.130.00	
PM4 C4	1	-33169.76	-9044.45	0	0	-551952	0
Caso: SLD_SISMA_SU - Si	sma_1+1+R_Su	120005.20	1 (050 05	<u> </u>	lo.	125204	lo
PM4 C5 Caso: SLD_SISMA_GIU - S		-30805.39	-6952.95	0	0	-425304	0
PM4 C6	1	-31932.97	-7161.43	0	0	-447812	0
Caso: STR_ECCEZIONALI	E - SLU_Str_Ecce						
PM4 C7	1	-37790.08	-15983.4	0	0	-3549309	0
Caso: GEO_ECCEZIONAL	E - SLU_Geo_Eco			lo	10	2651062	lo .
PM4 C8 Caso: EQU_ECCEZIONAL	F - SIII Fau Fa	-38243.23	-18031.93	0	0	-3651963	0
PM4 C9	1	-37790.08	-15983.4	0	0	-3549309	0
Caso: RARA - SLE caratteri	stica (rara)					-	
PM4 C10	1	-39691.22	-10719.47	0	0	-754541	0
Caso: FREQ SLE frequen	<u>te</u>	20601.22	10710 47	0	0	-754541	0
PM4 C11 Caso: Q.PERM SLE quas	i normanente	-39691.22	-10719.47	U	JU .	-/54541	μ
PM4 C12	1	-39691.22	-10719.47	0	0	-754541	0
Punto maglia:Punto 5				I.	JI.		
Caso: STR - SLU A1+M1+R	13						
PM5 C1	1	-47964.61	-14170.65	0	0	-932366	0
<u>Caso: GEO - SLU A2+M2+R</u> PM5 C2	<u>K2</u>	-37145.72	-14101.81	0	0	-1005786	0
Caso: SLV_SISMA_SU - Sis	 sma_1+1+R_Su	F37143.72	-14101.81	υ	U	F1003780	υ
PM5 C3	1	-28649.56	-8657.41	0	0	-504530	0
Caso: SLV_SISMA_GIU - S	isma_1+1+R_Giu						
PM5 C4	1 1. 1. D. G	-30927.24	-9044.04	0	0	-513272	0
Caso: SLD_SISMA_SU - Si	<u>sma_1+1+R_Su</u>	-29079.89	-6952.55	0	0	-393909	0
Caso: SLD_SISMA_GIU - S	¹ Sisma 1+1+R Giı		-0/32.33	μ	U	F373707	V
PM5 C6	15//10/						
1	1	-30115.05	-7161	0	0	-415346	0
Caso: STR_ECCEZIONALI	1 E - SLU_Str_Ecce	zionale (appr.2)		1			0
Caso: STR_ECCEZIONALI PM5 C7	1	zionale (appr.2) -23230.82	-15980.27	0	0	-415346 -3382380	0
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONALI	1	zionale (appr.2) -23230.82 cezionale (appr.2	-15980.27 2)	0	0	-3382380	
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8	1 E - SLU_Geo_Eco_1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54	-15980.27 2) -18028.89	1			O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONALI	1 E - SLU_Geo_Eco_1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54	-15980.27 2) -18028.89	0	0	-3382380	
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratterion	1 E - SLU_Geo_Eco 1 E - SLU_Equ_Eco 1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per eq -23230.82	-15980.27 2) -18028.89 quilibrio) -15980.27	0	0 0	-3382380 -3479383 -3382380	0
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10	1	zionale (appr.2) -23230.82 cezionale (appr.2 -23264.54 cezionale (per eq	-15980.27 2) -18028.89 quilibrio)	0	0	-3382380 -3479383	0
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequent	1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per ed -23230.82	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31	0 0 0 0	0 0	-3382380 -3479383 -3382380 -702548	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 PM5 C8 Caso: EQU_ECCEZIONAL PM5 PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequent PM5 C11	1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per eq -23230.82	-15980.27 2) -18028.89 quilibrio) -15980.27	0	0 0	-3382380 -3479383 -3382380	0
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12	1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per ed -23230.82	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31	0 0 0 0	0 0	-3382380 -3479383 -3382380 -702548	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6	1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per ed -23230.82 -36625.76	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31	0 0	0 0 0	-3382380 -3479383 -3382380 -702548	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU AI+MI+K	1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per ed -23230.82 -36625.76 -36625.76	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31	0	O	-3382380 -3479383 -3382380 -702548 -702548 -702548	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1		zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per ed -23230.82 -36625.76	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31	0 0	0 0 0	-3382380 -3479383 -3382380 -702548	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU AI+MI+K		czionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per eq -23230.82 -36625.76 -36625.76 -36625.76 -47964.61	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31	0	O	-3382380 -3479383 -3382380 -702548 -702548 -702548	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+M	1	zionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per ed -23230.82 -36625.76 -36625.76	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -10718.31	0	O	-3382380 -3479383 -3382380 -702548 -702548 -702548 -932366	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 PM5 C8 Caso: EQU_ECCEZIONAL PM5 PM5 C9 Caso: RARA - SLE caratter PM5 PM5 C10 Caso: FREQ SLE frequent PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+K PM6 C2 Caso: SLV_SISMA_SU - Sis PM6 C3		czionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per eq -23230.82 -36625.76 -36625.76 -36625.76 -47964.61 -37145.72 -28649.56	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -10718.31	0	O	-3382380 -3479383 -3382380 -702548 -702548 -702548 -932366	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratter PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+i PM6 C2 Caso: SLV_SISMA_SU - Sis PM6 C3 Caso: SLV_SISMA_GIU - Sis		-23230.82 -23230.82 -2324.54 -23264.54 -23230.82 -36625.76 -36625.76 -36625.76 -47964.61 -37145.72 -28649.56	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -14170.65 -14101.81 -8657.41	0	O	-3382380 -3479383 -3382380 -702548 -702548 -702548 -932366 -1005786 -504530	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+K PM6 C2 Caso: SLV_SISMA_SU - Sis PM6 C3 Caso: SLV_SISMA_GIU - S PM6 C4		czionale (appr.2) -23230.82 cezionale (appr.2) -23264.54 cezionale (per eq -23230.82 -36625.76 -36625.76 -36625.76 -47964.61 -37145.72 -28649.56	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -10718.31 -14170.65	0	0 0 0 0 0	-3382380 -3479383 -3382380 -702548 -702548 -702548 -932366 -1005786	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratter PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+i PM6 C2 Caso: SLV_SISMA_SU - Sis PM6 C3 Caso: SLV_SISMA_GIU - Sis		-23230.82 -23230.82 -2324.54 -23264.54 -23230.82 -36625.76 -36625.76 -36625.76 -47964.61 -37145.72 -28649.56 -230927.24 -30927.24	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -10718.31 -14170.65 -14101.81 -8657.41 -9044.04	O	O	-3382380 -3479383 -3382380 -702548 -702548 -702548 -932366 -1005786 -504530 -513272	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+F PM6 C3 Caso: SLV_SISMA_SU - Siz PM6 C4 Caso: SLD_SISMA_SU - Siz PM6 C5		-23030.82 -23230.82 -23230.82 -23264.54 -23230.82 -36625.76 -36625.76 -36625.76 -47964.61 -37145.72 -28649.56 -29079.89	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -14170.65 -14101.81 -8657.41	0	0 0 0 0 0 0	-3382380 -3479383 -3382380 -702548 -702548 -702548 -932366 -1005786 -504530	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+F PM6 C2 Caso: SLV_SISMA_SU - Siz PM6 C3 Caso: SLV_SISMA_GIU - Siz PM6 C4 Caso: SLD_SISMA_SU - Siz PM6 C5 Caso: SLD_SISMA_GIU - Siz PM6 C6		-23030.82 -23230.82 -23230.82 -23264.54 -23230.82 -36625.76 -36625.76 -36625.76 -36625.76 -36625.76 -36927.24 -29079.89 -30115.05	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -10718.31 -14170.65 -14101.81 -8657.41 -9044.04 -6952.55 -7161	O	0 0 0 0 0 0	-3382380 -3479383 -3382380 -702548 -702548 -702548 -932366 -1005786 -504530 -513272	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 C8 Caso: EQU_ECCEZIONAL PM5 C9 Caso: RARA - SLE caratteri PM5 C10 Caso: FREQ SLE frequen PM5 C11 Caso: Q.PERM SLE quas PM5 C12 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: GEO - SLU A2+M2+F PM6 C3 Caso: SLV_SISMA_SU - Si PM6 C4 Caso: SLD_SISMA_GIU - S PM6 C5 Caso: SLD_SISMA_GIU - S PM6 C5 Caso: SLD_SISMA_GIU - S PM6 C6 Caso: STR_ECCEZIONALI		-23030.82 -23230.82 -23230.82 -23264.54 -23230.82 -36625.76 -36625.76 -36625.76 -36625.76 -36625.76 -36927.24 -29079.89 -30115.05 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -23030.82 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05 -30115.05	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -10718.31 -14170.65 -14101.81 -8657.41 -9044.04 -6952.55 -7161		O	-3382380 -3479383 -3382380 -702548 -702548 -702548 -702548 -932366 -1005786 -504530 -513272 -393909 -415346	O
Caso: STR_ECCEZIONALI PM5 C7 Caso: GEO_ECCEZIONAL PM5 PM5 C8 Caso: EQU_ECCEZIONAL PM5 PM5 C9 Caso: RARA - SLE caratteri PM5 PM5 C10 Caso: FREQ SLE frequent PM5 PM5 C11 Caso: Q.PERM SLE quas PM5 Punto maglia: Punto 6 Caso: STR - SLU A1+M1+K PM6 C1 Caso: STR - SLU A2+M2+K PM6 C2 Caso: SLU_SISMA_SU - Siz PM6 C3 Caso: SLV_SISMA_GIU - Siz PM6 C4 Caso: SLD_SISMA_GIU - Siz PM6 C5 Caso: SLD_SISMA_GIU - Siz PM6 C6		-30927.24 -30115.05 -3230.82 -3230.82 -36625.76 -36625.76 -36625.76 -36625.76 -36625.76 -36625.76 -36625.76 -36625.76 -30927.24 -29079.89 -30115.05 -23230.82 -23230.82 -23230.82	-15980.27 2) -18028.89 quilibrio) -15980.27 -10718.31 -10718.31 -10718.31 -14170.65 -14101.81 -8657.41 -9044.04 -6952.55 -7161 -15980.27	O	0 0 0 0 0 0 0	-3382380 -3479383 -3382380 -702548 -702548 -702548 -702548 -932366 -1005786 -504530 -513272 -393909	O

	Tara	1.	Tarana and and			T-	Tarasasas	1-
PM6	C8	1	-23264.54	-18028.89	0	0	-3479383	0
	QU_ECCEZIONAL	LE - SLU_Equ_I			lo.	lo lo	12202200	lo.
PM6	C9	1	-23230.82	-15980.27	0	0	-3382380	0
	RA - SLE caratter	ristica (rara)	-36625.76	10710 21	lo	0	702549	0
PM6	C10	<u> </u> 1	-30023.70	-10718.31	0	U	-702548	U
	REQ SLE freque	nte	26625.76	10719 21	lo.	lo.	702549	0
PM6	C11	<u> 1</u> :	-36625.76	-10718.31	0	0	-702548	U
PM6	PERM SLE qua C12	si permanente	26625.76	10719 21	lo.	0	-702548	0
Punto magl		1	-36625.76	-10718.31	0	U	-702348	υ
	R - SLU A1+M1+.	D2						
PM7	C1	1	-47964.61	-14170.65	0	0	-932366	0
	EO - SLU A2+M2+	D2	-47504.01	-14170.03	О	U	F932300	U
PM7	C2	1	-37145.72	-14101.81	0	0	-1005786	0
	.V_SISMA_SU - S	isma 1+1+R Su		14101.01		Į0	1003700	<u> </u>
PM7	C3	1	-28649.56	-8657.41	0	0	-504530	0
	V_SISMA_GIU -	Sisma 1+1+R G		0037.41		<u>o</u>	304330	<u> </u>
PM7	C4	1	-30927.24	-9044.04	0	0	-513272	0
	D_SISMA_SU - S	isma 1+1+R Su		7011.01	<u> </u>	ΙΥ	313212	<u> </u>
PM7	C5	1	-29079.89	-6952.55	0	0	-393909	0
	D_SISMA_GIU -	Sisma 1+1+R C		1 0, 0 2,00		I~		
PM7	C6	1	-30115.05	-7161	0	0	-415346	0
	R_ECCEZIONAL	E - SLU Str Ec				1*		1-
PM7	C7	1	-23230.82	-15980.27	0	0	-3382380	0
	EO_ECCEZIONAL	LE - SLU Geo I				1*	1	
PM7	C8	1	-23264.54	-18028.89	0	0	-3479383	0
Caso: EC	OU_ECCEZIONAL	LE - SLU Eau 1	Eccezionale (per e			Į.		
PM7	C9	1	-23230.82	-15980.27	0	0	-3382380	0
	RA - SLE caratte	ristica (rara)			•	L		L.
PM7	C10	1	-36625.76	-10718.31	0	0	-702548	0
Caso: FR	REQ SLE freque	nte				·	1	
PM7	C11	1	-36625.76	-10718.31	0	0	-702548	0
Caso: Q.1	PERM SLE qua	si permanente	•	•			•	•
PM7	C12	1	-36625.76	-10718.31	0	0	-702548	0
Punto magl	lia:Punto 8						•	
	TR - SLU A1+M1+	R3						
PM8	C1	1	-47964.61	-14170.65	0	0	-932366	0
Caso: GE	EO - SLU A2+M2+	-R2						
PM8	C2	1	-37145.72	-14101.81	0	0	-1005786	0
Caso: SL	.V_SISMA_SU - S	isma_1+1+R_Su	-					-
PM8	C3	1	-28649.56	-8657.41	0	0	-504530	0
	V_SISMA_GIU -	Sisma_1+1+R_G						
PM8	C4	1	-30927.24	-9044.04	0	0	-513272	0
	.D_SISMA_SU - S	isma_1+1+R_Su						
PM8	C5	1	-29079.89	-6952.55	0	0	-393909	0
Caso: SL	D_SISMA_GIU -	Sisma_1+1+R_C						
PM8	C6	1	-30115.05	-7161	0	0	-415346	0
Caso: ST	R_ECCEZIONAL	E - SLU_Str_Ec						
PM8	C7	1	-23230.82	-15980.27	0	0	-3382380	0
	EO_ECCEZIONAL	LE - SLU_Geo_I	` * *					
PM8	C8	1	-23264.54	-18028.89	0	0	-3479383	0
	QU_ECCEZIONAL	LE - SLU_Equ_l					1	1
PM8	C9	1	-23230.82	-15980.27	0	0	-3382380	0
	RA - SLE caratte	ristica (rara)						
PM8	C10	1	-36625.76	-10718.31	0	0	-702548	0
Caso: FR	REQ SLE freque	nte						
PM8	C11	1	-36625.76	-10718.31	0	0	-702548	0
	PERM SLE qua	si permanente						
PM8	C12	1	-36625.76	-10718.31	0	0	-702548	0
امل مامر	la samasità				· · · · · · · · · · · · · · · · · · ·	·	·	·

Calcolo della capacità portante e curva di mobilitazione.

Il seguente calcolo di capacità portante vale per tutti i pali.

Si riporta integralmente il calcolo di capacità portante per la situazione peggiore (coef. di sicurezza minore): Punto maglia PM1, Caso C1 (Stato limite ultimo).

Descrizione dei metodi di calcolo utilizzati

Descrizione del metodo di calcolo utilizzato per la portata di base.

Il calcolo della portata di base viene effettuato col metodo AGI.

Le "Raccomandazioni sui pali di fondazione" pubblicate dall'AGI nel 1984 contengono le indicazioni per il calcolo della capacità portante di pali di fondazione in terreni sciolti e coesivi, per pali infissi e trivellati. Per terreni sciolti, il metodo si basa sui fattori adimensionali di capacità portante N_c e N_q , funzione dell'angolo di

resistenza al taglio ϕ ', e sulla tensione verticale efficace σ'_v agente alla profondità della base z_b . Per terreni coesivi, il metodo si basa sulla resistenza al taglio non drenata s_u , e sulla tensione verticale totale σ_v agente alla profondità della base z_b . Considerazioni di carattere empirico hanno reso evidente la necessità di considerare l'esistenza di una profondità critica z_c . Questo metodo e' applicabile a terreni non coesivi e coesivi, sia per pali infissi (s/D~8÷10%) che per pali trivellati (s/D~25÷30%).

 $q_{lim} = N_c c' + N_q \sigma'_v$ (terreno non coesivo)

 $q_{lim} = 9.0 s_u + \sigma_v$ (terreno coesivo)

Descrizione del metodo di calcolo utilizzato per la portata laterale.

Il calcolo della portata per attrito laterale viene effettuato col metodo AGI.

Le "Raccomandazioni sui pali di fondazione" pubblicate dall'AGI nel 1984 contengono le indicazioni per il calcolo della capacità portante di pali di fondazione in terreni sciolti e coesivi, per pali infissi e trivellati. Per terreni sciolti, l'attrito laterale è valutato in termini di tensioni efficaci, in funzione di un coefficiente di spinta orizzontale k, dell'angolo di attrito palo-terreno μ e della tensione verticale efficace σ'_v . Per terreni coesivi, il metodo si basa sulla resistenza al taglio non drenata s_u , o, in alternativa, sull'angolo di resistenza al taglio ϕ' e sulla tensione verticale efficace σ'_v . Viene inoltre valutata la profondità critica z_c oltre cui l'attrito rimane costante, secondo il diametro del palo. Questo metodo e' applicabile a terreni non coesivi e coesivi, sia per pali infissi che per pali trivellati.

 $f_{s,lim} = \mu k \sigma'_{v0}$ (terreno non coesivo)

 $f_{s,lim} = \alpha s_u$ oppure $f_{s,lim} = (1 - \sin \phi') \tan \phi' \sigma'_{v0}$ (terreno coesivo)

Descrizione del metodo di calcolo utilizzato per il modulo di reazione orizzontale.

Il calcolo del modulo di reazione orizzontale viene effettuato col metodo *Lineare*.

Il valore del modulo di reazione orizzontale varia linearmente con la quota, e viene calcolato come somma di un termine costante (A) piu' un coefficiente (B) moltiplicato per l'approfondimento (z) sotto il piano campagna.

Descrizione del metodo di calcolo utilizzato per la resistenza trasversale laterale.

Il calcolo della resistenza trasversale laterale viene effettuato col metodo *Broms*.

La teoria pubblicata da Broms nel 1964 propone due approcci differenti per terreni coesivi e non coesivi. Per terreni sciolti, propone una distribuzione di resistenza ultima pari a tre volte la pressione di resistenza passiva valutata secondo la teoria di Rankine, $p_l = 3K_p\sigma'_v$. Per terreni coesivi, propone una distribuzione di p_l che vede un tratto nullo per i primi 1.5 diametri dalla superficie, seguito da un tratto con valore di resistenza pari a $9s_u$ (resistenza al taglio non drenata) per profondità maggiori.

 $p_{lim} = 3 K_p \sigma'_{v0}$ (terreno non coesivo)

 $p_{lim} = 9 s_u$ (terreno coesivo)

STR - SLU A1+M1+R3

Si applicano i seguenti coefficienti di sicurezza parziali per le azioni: $\gamma_{G1,f}=1.00$, $\gamma_{G1,s}=1.30$, $\gamma_{G2,f}=0.80$, $\gamma_{G2,s}=1.50$, $\gamma_{Qi,f}=0.00$, $\gamma_{Qi,s}=1.50$.

Si applicano i seguenti coefficienti di sicurezza, secondo il numero di verticali indagate:

n. vert.	1	2	3	4	5	7	10
$\xi_{ m med}$	1.55	1.65	1.60	1.55	1.50	1.45	1.40
ξ_{\min}	1.42	1.55	1.48	1.42	1.34	1.28	1.21

Si applicano i seguenti coefficienti di sicurezza parziali alle portate calcolate, secondo il tipo di palo:

Tipo di palo	Infisso	Trivellato	A elica	continua	Micropalo	Avvitato	
γь	1.15	1.35	1.30		1.35	1.15	
$\gamma_{ m s}$	1.15	1.15	1.15		1.15	1.15	
$\gamma_{ m st}$	1.25	1.25	1.25		1.25	1.25	

Alle sollecitazioni applicate viene aggiunto il peso proprio del palo, amplificato col coefficiente parziale $\gamma_{G1,fav}=1.00$ o $\gamma_{G1,sfa}=1.30$, secondo il caso.

Calcolo della portata di base.

Metodo AGI per il calcolo della portata di base.

Lo strato in cui si immorsa la base del palo si estende da quota -365 [cm] a quota -1065 [cm]. Segue il calcolo alla quota di base del palo, -760 [cm].

La base del palo si trova alla quota $z_b = -760$ [cm], e la profondità critica è $z_c = -900$ [cm]. In questo caso la tensione verticale efficace viene calcolata alla quota di base. Il valori dell'angolo di resistenza al taglio ϕ'_k e

della coesione efficace c'_k vengono ricavati dallo strato in cui si immorsa la base del palo. L'angolo di resistenza al taglio viene corretto secondo l'espressione $\phi=\phi-3$. Il coefficiente N_q è calcolato secondo Vesic (1972, 1975, 1977). Il coefficiente N_c è calcolato secondo Reissner (1924). $\phi'_k=28.4$ [°]. $c'_k=0.6$ [daN/cm²]. $N_c=32.466$. $N_q=16.423$. $\sigma'_v=1.37$ [daN/cm²]. Il valore della capacità portante calcolato è pari a 41.94 [daN/cm²].

L'area di base vale 2827.43 [cm²].

La portata di base calcolata vale 118575.64 [daN]. Si applica ξ_{med} =1.55. Si applica γ_b =1.35. Portata di calcolo: $Q_{b,d} = 56666.97$ [daN] (s/D=30.00%).

Calcolo della portata laterale.

Il fusto del palo attraversa 3 strati.

Strato 1: Non coesivo

Metodo AGI per il calcolo della portata laterale.

Il palo attraversa questo strato da quota -60 [cm] a quota -265 [cm]. Segue il calcolo alla quota intermedia di -165 [cm].

La quota critica z_c vale -780 [cm]. La quota di interesse (-165 [cm]) è al di sopra della profondità critica. L'angolo di resistenza al taglio φ'_k vale 21. Il coefficiente di attrito μ vale 0.384. Il coefficiente di spinta k vale 0.655. La tensione verticale efficace vale $\sigma'_v = 0.25$ [daN/cm²]. L'attrito laterale calcolato vale 0.06 [daN/cm²]. La portata laterale calcolata vale 2368.2 [daN] (1657.74 [daN]). Si applica ξ_{med} =1.55. Si applicano γ_s =1.15 e γ_{st} =1.25. Portate di calcolo: $Q_{sc,d}$ = 1328.58 [daN] (s/D=0.50%). Qst,d = 855.61 [daN] (s/D=0.50%).

Strato 2: Coesivo

Metodo AGI per il calcolo della portata laterale.

Il palo attraversa questo strato da quota -265 [cm] a quota -365 [cm]. Segue il calcolo alla quota intermedia di -315 [cm].

La quota critica z_c vale -780 [cm]. La quota di interesse (-315 [cm]) è al di sopra della profondità critica. L'angolo di resistenza al taglio φ'_k vale 24. Il coefficiente di attrito μ vale 0.445. Il coefficiente di spinta k vale 0.655. La tensione verticale efficace vale $\sigma'_v = 0.49$ [daN/cm²]. L'attrito laterale calcolato vale 0.14 [daN/cm²]. La portata laterale calcolata vale 2679.79 [daN] (1875.85 [daN]). Si applica ξ_{med} =1.55. Si applicano γ_s =1.15 e γ_{st} =1.25. Portate di calcolo: $Q_{sc,d}$ = 1503.39 [daN] (s/D=0.50%). Qst,d = 968.18 [daN] (s/D=0.50%).

Strato 3: Coesivo

Metodo *AGI* per il calcolo della portata laterale.

Il palo attraversa questo strato da quota -365 [cm] a quota -760 [cm]. Segue il calcolo alla quota intermedia di -560 [cm].

La quota critica z_c vale -780 [cm]. La quota di interesse (-560 [cm]) è al di sopra della profondità critica. L'angolo di resistenza al taglio ϕ'_k vale 28.4. Il coefficiente di attrito μ vale 0.541. Il coefficiente di spinta μ vale 0.655. La tensione verticale efficace vale $\sigma'_v = 0.97$ [daN/cm²]. L'attrito laterale calcolato vale 0.34 [daN/cm²].

La portata laterale calcolata vale 25654.59 [daN] (17958.21 [daN]). Si applica ξ_{med} =1.55. Si applicano γ_s =1.15 e γ_{st} =1.25. Portate di calcolo: $Q_{sc,d}$ = *14392.48* [*daN*] (s/D=*0.50*%). Qst,d = *9268.75* [*daN*] (s/D=*0.50*%).

Portata laterale totale

La portata di calcolo Q_{sc,d} è *17224.45 [daN]*, Q_{st,d} è *11092.54 [daN]*.

Portata totale (base + laterale)

La portata di calcolo Q_{tc,d} è 73891.42 [daN], Q_{tt,d} è 11092.54 [daN].

Calcolo del modulo di reazione orizzontale.

Il fusto del palo attraversa 3 strati.

Strato 1: Non coesivo

Metodo *Lineare* per il calcolo del modulo di reazione orizzontale.

Il palo attraversa questo strato da quota -60 [cm] a quota -265 [cm]. Segue il calcolo alla quota intermedia di -165 [cm].

L'approfondimento vale 105 [cm]. Il modulo di reazione orizzontale calcolato vale 11.5 [daN/cm³].

Modulo di reazione orizzontale medio: $ks_{o,med} = 11.36 [daN/cm^3]$.

Strato 2: Coesivo

Metodo *Lineare* per il calcolo del modulo di reazione orizzontale.

Il palo attraversa questo strato da quota -265 [cm] a quota -365 [cm]. Segue il calcolo alla quota intermedia di -315 [cm].

L'approfondimento vale 255 [cm]. Il modulo di reazione orizzontale calcolato vale 11.5 [daN/cm³].

Modulo di reazione orizzontale medio: $ks_{o,med} = 11.5 [daN/cm^3]$.

Strato 3: Coesivo

Metodo *Lineare* per il calcolo del modulo di reazione orizzontale.

Il palo attraversa questo strato da quota -365 [cm] a quota -760 [cm]. Segue il calcolo alla quota intermedia di -560 [cm].

L'approfondimento vale 500 [cm]. Il modulo di reazione orizzontale calcolato vale 11.5 [daN/cm³].

Modulo di reazione orizzontale medio: $ks_{o,med} = 11.5 [daN/cm^3]$.

Calcolo della resistenza trasversale laterale.

Il fusto del palo attraversa 3 strati.

Strato 1: Non coesivo

Metodo *Broms* per il calcolo della resistenza trasversale laterale.

Il palo attraversa questo strato da quota -60 [cm] a quota -265 [cm]. Segue il calcolo alla quota intermedia di -165 [cm].

L'angolo di resistenza al taglio φ'_k vale 21. La tensione verticale efficace vale $\sigma'_v = 0.25$ [daN/cm²]. La pressione limite laterale calcolata vale 1.57 [daN/cm²].

La resistenza trasversale laterale calcolata vale 19041.55 [daN]. Si applica ξ_{med} =1.55. Si applica γ_{tr} =1.30.

Resistenza trasversale di calcolo: $R_{tr,d} = 9449.9$ [daN].

Strato 2: Coesivo

Metodo *Broms* per il calcolo della resistenza trasversale laterale.

Il palo attraversa questo strato da quota -265 [cm] a quota -365 [cm]. Segue il calcolo alla quota intermedia di -315 [cm].

L'angolo di resistenza al taglio ϕ'_k vale 24. La tensione verticale efficace vale $\sigma'_v = 0.49$ [daN/cm²]. La pressione limite laterale calcolata vale 3.47 [daN/cm²].

La resistenza trasversale laterale calcolata vale 20807.14 [daN]. Si applica ξ_{med} =1.55. Si applica γ_{tr} =1.30.

Resistenza trasversale di calcolo: $R_{tr,d} = 10326.12 [daN]$.

Strato 3: Coesivo

Metodo *Broms* per il calcolo della resistenza trasversale laterale.

Il palo attraversa questo strato da quota -365 [cm] a quota -760 [cm]. Segue il calcolo alla quota intermedia di -560 [cm].

L'angolo di resistenza al taglio ϕ'_k vale 28.4. La tensione verticale efficace vale $\sigma'_v = 0.97$ [daN/cm²]. La pressione limite laterale calcolata vale 8.17 [daN/cm²].

La resistenza trasversale laterale calcolata vale 194654.61 [daN]. Si applica ξ_{med} =1.55. Si applica γ_{tr} =1.30. Resistenza trasversale di calcolo: $R_{tr,d}$ = **96602.78** [daN].

Resistenza laterale totale

Per palo in grado di traslare rigidamente (meccanismo di palo "corto", assumendo che non via sia rottura strutturale), la resistenza laterale di calcolo R_{tr,d} è *116378.81 [daN]*. Per palo che ruota in testa (meccanismo di palo "intermedio" o "lungo", assumendo che non via sia rottura strutturale), la resistenza laterale di calcolo R_{tr,d} è *90642.17 [daN]*.

Curva di mobilitazione verticale

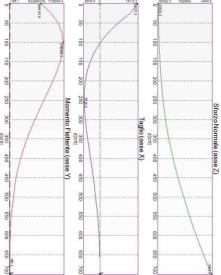
La curva di mobilitazione del palo è definita dalle seguenti coppie di valori, dove s è il cedimento, misurato in [cm], ed E_d è la sollecitazione di sforzo normale (comprensiva del peso proprio del palo), espressa in [daN].

	1	2	3	4
s	-13.33	-0.26		0.24
E_d	-73891.42	-18333.15	0	11092.54

Si riassume in seguito il valore di capacità portante per tutti i casi.

Caso	Qst[daN]	Qsc[daN]	Qbc[daN]	Qtt[daN]	Qtc[daN]
C1	11092.54	17224.45	56666.97	11092.54	73891.42
C2	11092.54	15846.49	41943.37	11092.54	57789.86

C3	11092.54	17224.45	56666.97	11092.54	73891.42
C4	11092.54	17224.45	56666.97	11092.54	73891.42
C5	11092.54	17224.45	56666.97	11092.54	73891.42
C6	11092.54	17224.45	56666.97	11092.54	73891.42
C7	11092.54	17224.45	56666.97	11092.54	73891.42
C8	11092.54	15846.49	41943.37	11092.54	57789.86
C9	21491.8	30702.57	118575.64	21491.8	149278.22
C10	21491.8	30702.57	118575.64	21491.8	149278.22
C11	21491.8	30702.57	118575.64	21491.8	149278.22
C12	21491.8	30702.57	118575.64	21491.8	149278.22

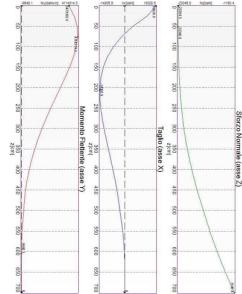

Qst = Portata Laterale in Trazione | Qsc = Portata Laterale in Compressione | Qbc = Portata di Base in Compressione | Qtt = Portata TOTALE in Trazione Qtc = Portata TOTALE in Compressione

Calcolo delle sollecitazioni.

Si riporta di seguito il dettaglio delle sollecitazioni calcolate, solo per i punti maglia con i pali più sollecitati. Le caratteristiche di sollecitazione sono espresse nel sistema di riferimento locale del palo.

Casi a SLU

I massimi valori di *Sforzo Normale di compressione*, si ottengono nel punto maglia *PM1*, nel caso di carico *C1* (Stato limite ultimo).

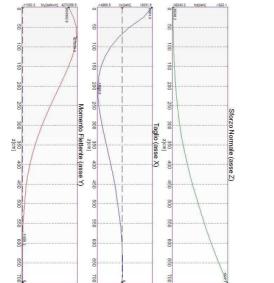


Caratteristiche di sollecitazione lungo il palo (punto maglia PM1, caso C1)

	in testa (punto maglia PM				
N _z [daN]	V _x [daN]	V _y [daN]	M _x [daN*cm]	M _y [daN*cm]	T _z [daN*cm]
52032.28	-14172.21	0	0	-1001158	0
Caratteristiche di	i sollecitazione lungo il pa	lo (punto maglia PM1, c			
z _{loc} [cm]	$N_z[d]$	aN]	$V_{xy}[daN]$	$M_{xy}[da$	N*cm]
)	-520	32.28	14172.21	100115	58
)	-520	32.28	14172.21	100115	58
25	-519	77.14	11412.48	131994	16
50	-518	42.6	6837.93	154618	34
75	-516	28.93	3131.02	166907	76
100	-513	36.41	205.12	170924	14
125	-509	65.31	2030.81	168508	31
150	-505	15.89	3668.22	161269	91
175	-499	88.43	4795.96	150591	16
200	-493	83.17	5498.09	137643	38
205	-492	52.81	5594.4	134870)1
205	-492	52.81	5594.4	134870)1
230	-484	72.3	5887.65	120455	56
255	-475	17.17	5916.41	105652	20
280	-464	54.51	5741.62	910429)
305	-452	84.63	5416.25	770692	2
305	-452	84.63	5416.25	770692	2
330	-438	38.41	4985.63	640491	[
355	-420	97.56	4487.76	521969)
380	-402	12.76	3953.97	416401	
405	-381	84.29	3409.55	324358	3
430	-360	12.38	2874.45	245845	5

455	-33697.23	2364.05	180428
555	-23005.75	754.91	31091
580	-19975.62	485.57	15704
605	-16802.38	273.75	6333
630	-13485.84	120.04	1533
655	-10025.75	24.65	154
680	-6421.79	12.39	186
700	-3434.79	0	0

I massimi valori di *Sforzo Normale di trazione*, si ottengono nel punto maglia *PM5*, nel caso di carico *C8* (SLU Geotecnico).

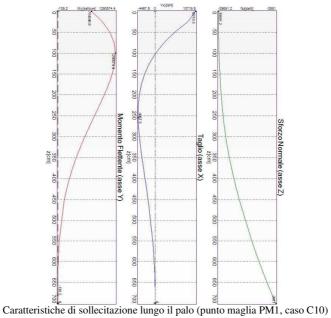


Caratteristiche di sollecitazione lungo il palo (punto maglia PM5, caso C8)

Azioni applicate in testa (punto maglia PM5, caso C8)								
N _z [daN]	$V_x[daN]$	V _y [daN]	M _x [daN*cm]	M _y [daN*cm]	T _z [daN*cm]			
-23264.54	-18028.89	0	0	-3479383	0			
Caratteristiche di solleci	tazione lungo il pa	o (punto maglia PM5, c	easo C8)					
z _{loc} [cm]	N _z [da		$V_{xy}[daN]$		laN*cm]			
0	-2326	4.54	18028.89	3479	383			
0	-2326	4.54	18028.89	3479	383			
25	-2332	5.11	12916.27	38639	991			
50	-2334	5.83	4706.25	40802	293			
75	-2332	6.79	1702.69	4114:	314			
100	-2326	8.1	6531.34	40083	327			
125	-2316	9.86	9998.57	3799	090			
150	-2303	2.16	12314.75	35179	987			
175	-2285	5.1	13677.04	3191	297			
200	-2263	8.78	14266.23	2840:	572			
205	-2259	0.81	14305.93	2769	132			
205	-2259	0.81	14305.93	2769	132			
230	-2228	6.14	14180.25	2411	998			
255	-2189	3.39	13613.83	2063	787			
280	-2144	6.28	12727.27	17339	969			
305	-2094	4.92	11622.89	1429	234			
305	-2094	4.92	11622.89	1429	234			
330	-2030	4.06	10385.93	11539	926			
355	-1951	4.4	9086	9104:	58			
380	-1865	1.8	7778.72	6996	83			
405	-1771	6.35	6507.47	5212	19			
430	-1670	8.15	5305.15	3737	33			
455	-1562	7.28	4195.88	2551	84			
555	-1057	7.53	950.93	1480-	4			
580	-9133	.69	466.71	2638				
605	-7617	.21	116.43	9648				
630	-6028	· · · · · · · · · · · · · · · · · · ·	100.24	9573				
655	-4365	.98	183.8	5745				
680	-2631	.01	134.69	1488				
700	-1190	.42	0	0				

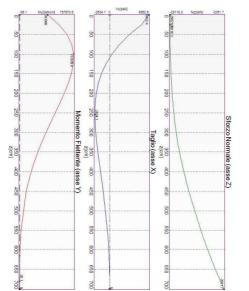
I massimi valori di Taglio (in valore assoluto), Momento flettente (in valore assoluto), si ottengono nel punto

maglia PM1, nel caso di carico C8 (SLU Geotecnico).



Caratteristiche di sollecitazione lungo il palo (punto maglia PM1, caso C8)

- 11	n testa (punto maglia PM	<u> </u>	M [4-N]*3	M [] - N *]	T (4-N)* 3
N _z [daN]	V _x [daN]	V _y [daN]	M _x [daN*cm]	M _y [daN*cm]	T _z [daN*cm]
-38243.23	-18031.93	U	<u>U</u>	-3651963	0
	sollecitazione lungo il pa			M. fala	aN*cm]
z _{loc} [cm]		13.23	$V_{xy}[daN]$ 18031.93	М _{ху} [da 36519	
0		13.23	18031.93	36519	
25		+3.23 +1.95	12793.55	40350	
50		79.62	4395.73	40330	
75					
75 100	l l	56.39 72.43	2146.32 7062.06	42702 41520	
125	-3762 -3762		10578.44	39288	
125 150		27.9 22.97	10578.44	36329	
150 175		22.97 57.77	12913.2	30329	
200		32.48	14835.66	29260	
205		10.22	14868.91	28517	
205		10.22	14868.91	28517	
230		79.66	14704.32	24809	
255		34.27	14090.78	21202	
280		05.67	13152.28	17791:	
305		14.04	11993.88	14644	
305		14.04	11993.88	14644	
330		58.88	10702.98	11805	
355	l l	55.93	9350.85	92982	
380		51.37	7994.36	71305	
405		25.36	6677.77	52977	
430	l l	38.04	5434.58	37855	
455		39.53	4289.26	25722	
555	-1673		950.36	12876	
580		30.44	455.01	4402	
605		15.44	98.37	11030	
630	-9489		119.98	10473	
655	-685		200.61	6179	
680	-4102		143.98	1586	
700	-1822	2.07	0	0	

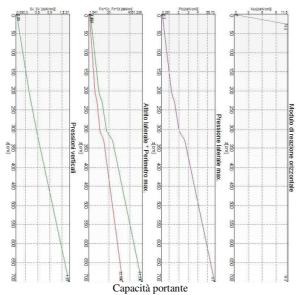

Casi a SLE

I massimi valori di *Sforzo Normale di compressione*, *Taglio (in valore assoluto)*, *Momento flettente (in valore assoluto)*, si ottengono nel punto maglia *PM1*, nel caso di carico *C10* (Rara).

Azioni applicate ii	n testa (punto maglia PM	1, caso C10)			
N _z [daN]	V _x [daN]	V _v [daN]	M _x [daN*cm]	M _v [daN*cm]	T _z [daN*cm]
-39691.22	-10719.47	0	0	-754541	0
Caratteristiche di	sollecitazione lungo il pa	lo (punto maglia PM1, c	aso C10)		·
z _{loc} [cm]	N _z [da	aN]	V _{xy} [daN]	M	Ixy[daN*cm]
0	-3969	91.22	10719.47	7:	54541
0	-3969	91.22	10719.47	7:	54541
25	-396	33.73	8634.05	99	95689
50	-396	13.36	5176.92	11	166897
75	-3948	30.44	2375.2	12	259999
100	-392	35.31	163.48	12	290574
125	-3902	28.27	1526.95	12	272517
150	-3870	09.66	2765.15	12	217995
175	-3832	29.78	3618.24	11	137468
200	-378	38.95	4149.68	10	039762
205	-3779	93.49	4222.62		018827
205	-3779	93.49	4222.62	10	018827
230	-372	15.03	4445.04	91	10013
255	-3649	99.54	4467.54	79	98239
280	-3570	00.11	4336.14	68	87917
305	-348	17.09	4090.9	58	82379
305	-348	17.09	4090.9	58	82379
330	-337	17.62	3766.03	48	84034
355	-323	37.64	3390.27	39	94501
380	-3094	45.77	2987.3	31	14746
405	-2939	92.33	2576.22	24	45202
430	-277	27.62	2172.13	18	85875
455	-259:	51.88	1786.64	13	36440
555	-1774	40.31	571	23	3547
580	-154	10.82	367.46	11	1906
605	-129	70.46	207.34	48	812
630	-104	18.99	91.1	11	173
655	-7750	5.12	18.91	11	10
680	-498	1.47	9.22	13	39
700	-2680	0.96	0	0	

I massimi valori di *Sforzo Normale di trazione*, si ottengono nel punto maglia *PM5*, nel caso di carico *C5* (Stato limite di danno).

Caratteristiche di sollecitazione lungo il palo (punto maglia PM5, caso C5)

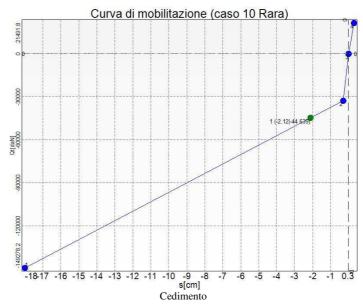

Azioni applicate i	n testa (punto maglia PM	15, caso C5)				
N _z [daN]	V _x [daN]	V _v [daN]	M _x [daN*cm]	M _v [daN*cm]	T _z [daN*cm]	
-29079.89	-6952.55	0	0	-393909	0	
Caratteristiche di	sollecitazione lungo il pa	lo (punto maglia PM5, c	aso C5)		·	
z _{loc} [cm]	$N_z[d$	aN]	V _{xy} [daN]	M_x	y[daN*cm]	
0	-290	79.89	6952.55	393	3909	
0	-290	79.89	6952.55	393	3909	
25	-291	18.32	5669.31	551	1222	
50	-291	09.38	3530.52	665	5360	
75	-290	53.21	1786.64	731	1040	
100	-289	49.97	400.04	757	7671	
125	-287	99.83	669.39	753	3685	
150	-286	02.92	1462.39		5504	
175	-283	59.4	2018.82	682	2537	
200	-280	69.42	2376.67	627	7217	
205	-280	05.86	2427.57		615204	
205	-280	05.86	2427.57	615	615204	
230	-276	11.23	2593.41	552	2150	
255	-271	12.32	2634.11	486	5575	
280	-265	49.17	2577.64	421	1253	
305	-259	21.96	2448.46	358	3299	
305	-259	21.96	2448.46	358	3299	
330	-251	29.71	2267.58	299	9260	
355	-241	61.49	2052.72	245	5202	
380	-231	07.24	1818.55	196	6784	
405	-219	67.14	1576.98	154	1335	
430	-207	41.32	1337.47	117	7917	
455	-194	29.9	1107.35	873	383	
555	-133	29.05	370.75	163	344	
580	-115	90.33	244.87	870)1	
605	-976	6.09	144.51	388	38	
630	-785	6.23	70.04	126	50	
655	-586	0.59	21.58	169)	
680	-377	9.01	0.83	36		
700	-205	1.7	0	0		

Verifiche geotecniche.

Si riporta di seguito il dettaglio delle verifiche eseguite, per ciascun palo.

Verifica: Capacità portante

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C1*, sestetto *1* (Stato limite ultimo).


Situazione peggiore: Punto maglia PM1, Caso C1, Sestetto 1

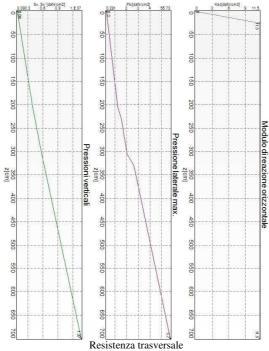
Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: Capacità portante							
Punto	Caso	Ses.	R _d : Qt[daN]	S _d : Qt[daN]	fs[-]		
PM1	C1	1	73891	58465	1.26		
PM2	C1	1	73891	58465	1.26		
PM3	C1	1	73891	58465	1.26		
PM4	C1	1	73891	58465	1.26		
PM5	C1	1	73891	54397	1.36		
PM6	C1	1	73891	54397	1.36		
PM7	C1	1	73891	54397	1.36		
PM8	C1	1	73891	54397	1.36		

Verifica: Cedimento

I cedimenti del singolo palo sono calcolati utilizzando la relativa curva di mobilitazione. L'interazione tra i pali è valutata con il metodo dei fattori di interazione (Poulos e Davis, 1980). La situazione di verifica più severa, si ottiene nel punto maglia *PM2*, nel caso di carico *C10*, sestetto *1* (Rara). Si ottengono i seguenti valori: cedimento del palo singolo = -21.16 [mm], cedimento indotto dal gruppo = -8.54 [mm], cedimento totale: -29.70 [mm].

Situazione peggiore: Punto maglia PM2, Caso C10, Sestetto 1


Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di

sicurezza minore.

Verifica: Cedimento							
Punto	Caso	Ses.	R _d : Ced.[mm]	S _d : Ced.[mm]	fs[-]		
PM1	C10	1	-40	-21 + -4 = -25	1.57		
PM2	C10	1	-40	-21 + -9 = -30	1.35		
PM3	C10	1	-40	-21 + -9 = -30	1.35		
PM4	C10	1	-40	-21 + -9 = -30	1.35		
PM5	C10	1	-40	-17 + -11 = -27	1.46		
PM6	C10	1	-40	-17 + -11 = -27	1.46		
PM7	C10	1	-40	-17 + -11 = -27	1.46		
PM8	C10	1	-40	-17 + -5 = -22	1.82		

Verifica: Resistenza trasversale

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C7*, sestetto *1* (Stato limite ultimo).

Situazione peggiore: Punto maglia PM1, Caso C7, Sestetto 1

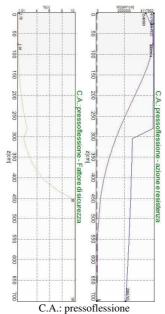
Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: Resiste	Verifica: Resistenza trasversale							
Punto	Caso	Ses.	R _d : Rtr[daN]	S _d : Rtr[daN]	fs[-]			
PM1	C7	1	116379	15983	7.28			
PM2	C7	1	116379	15983	7.28			
PM3	C7	1	116379	15983	7.28			
PM4	C7	1	116379	15983	7.28			
PM5	C7	1	116379	15980	7.28			
PM6	C7	1	116379	15980	7.28			
PM7	C7	1	116379	15980	7.28			
PM8	C7	1	116379	15980	7.28			

Verifiche strutturali.

Si riporta di seguito il dettaglio delle verifiche eseguite, per ciascun palo, solo in corrispondenza della progressiva dove si ottiene la situazione più severa.

Verifica: Spostamento orizzontale

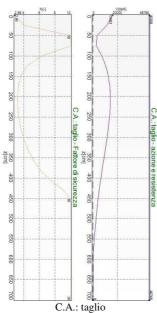

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C10*, sestetto *1* (Rara). Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: Spostamento orizzontale							
Punto	Caso	Ses.	R _d : Sor[mm]	S _d : Sor[mm]	fs[-]		
	C10	1	40	3	10.00		
PM2	C10	1	40	3	10.00		

PM3	C10	1	40	3	10.00
	C10	1	40	3	10.00
PM5	C10	1	40	3	10.00
	C10	1	40	3	10.00
	C10	1	40	3	10.00
PM8	C10	1	40	3	10.00

Verifica: C.A.: pressoflessione

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C7*, sestetto *1* (Stato limite ultimo).

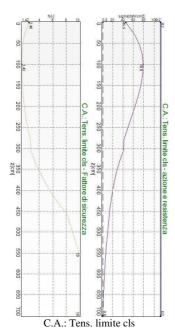

Situazione peggiore: Punto maglia PM1, Caso C7, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.: pressoflessione						
Punto	Caso	Ses.	R _d : M[daN*cm]	S _d : M[daN*cm]	fs[-]	
PM1	C7	1	4116392	4066964	1.01	
PM2	C7	1	4116392	4066964	1.01	
PM3	C7	1	4116392	4066964	1.01	
PM4	C7	1	4116392	4066964	1.01	
PM5	C7	1	3973078	3916118	1.01	
PM6	C7	1	3973078	3916118	1.01	
PM7	C7	1	3973078	3916118	1.01	
PM8	C7	1	3973078	3916118	1.01	

Verifica: C.A.: taglio

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C7*, sestetto *1* (Stato limite ultimo).

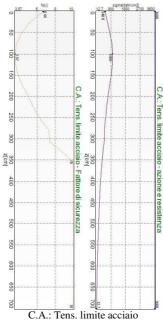

C.A.: taglio Situazione peggiore: Punto maglia PM1, Caso C7, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.: taglio						
Punto	Caso	Ses.	R _d : V[daN]	S _d : V[daN]	fs[-]	
PM1	C7	1	45768	15983	2.86	
PM2	C7	1	45768	15983	2.86	
PM3	C7	1	45768	15983	2.86	
PM4	C7	1	45768	15983	2.86	
PM5	C7	1	45768	15980	2.86	
PM6	C7	1	45768	15980	2.86	
PM7	C7	1	45768	15980	2.86	
PM8	C7	1	45768	15980	2.86	

Verifica: C.A.: Tens. limite cls

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C12*, sestetto *1* (Quasi Permanente).

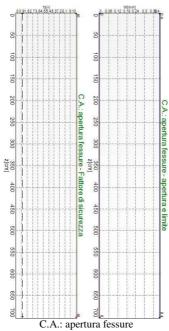

Situazione peggiore: Punto maglia PM1, Caso C12, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.: Tens. limite cls						
Punto	Caso	Ses.	R _d : sigma[daN/cm2]	S _d : sigma[daN/cm2]	fs[-]	
PM1	C12	1	112	78.8	1.42	
PM2	C12	1	112	78.8	1.42	
PM3	C12	1	112	78.8	1.42	
PM4	C12	1	112	78.8	1.42	
PM5	C12	1	112	76.2	1.47	
PM6	C12	1	112	76.2	1.47	
PM7	C12	1	112	76.2	1.47	
PM8	C12	1	112	76.2	1.47	

Verifica: C.A.: Tens. limite acciaio

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C10*, sestetto *1* (Rara).

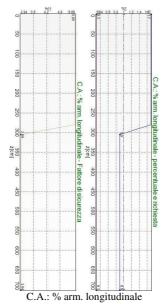

Situazione peggiore: Punto maglia PM1, Caso C10, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.: Tens. limite acciaio						
Punto	Caso	Ses.	R _d : sigma[daN/cm2]	S _d : sigma[daN/cm2]	fs[-]	
PM1	C10	1	3600	1009	3.57	
PM2	C10	1	3600	1009	3.57	
PM3	C10	1	3600	1009	3.57	
PM4	C10	1	3600	1009	3.57	
PM5	C10	1	3600	1007.8	3.57	
PM6	C10	1	3600	1007.8	3.57	
PM7	C10	1	3600	1007.8	3.57	
PM8	C10	1	3600	1007.8	3.57	

Verifica: C.A.: apertura fessure

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C11*, sestetto *1* (Frequente).

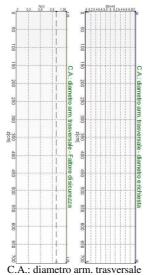

Situazione peggiore: Punto maglia PM1, Caso C11, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.: apertura fessure						
Punto	Caso	Ses.	R _d : W[mm]	S _d : W[mm]	fs[-]	
PM1	C11	1	0.4	0	10.00	
PM2	C11	1	0.4	0	10.00	
PM3	C11	1	0.4	0	10.00	
PM4	C11	1	0.4	0	10.00	
PM5	C11	1	0.4	0	10.00	
PM6	C11	1	0.4	0	10.00	
PM7	C11	1	0.4	0	10.00	
PM8	C11	1	0.4	0	10.00	

Verifica: C.A.: % arm. longitudinale

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C3*, sestetto *1* (Stato limite di salvaguardia della Vita).

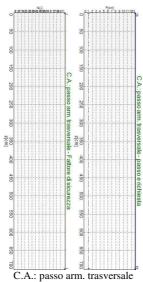

Situazione peggiore: Punto maglia PM1, Caso C3, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.: % arm. longitudinale						
Punto	Caso	Ses.	R _d : %[]	S _d : %[]	fs[-]	
PM1	C3	1	0.9	0.3	2.84	
PM2	C3	1	0.9	0.3	2.84	
PM3	C3	1	0.9	0.3	2.84	
PM4	C3	1	0.9	0.3	2.84	
PM5	C3	1	0.9	0.3	2.84	
PM6	C3	1	0.9	0.3	2.84	
PM7	C3	1	0.9	0.3	2.84	
PM8	C3	1	0.9	0.3	2.84	

Verifica: C.A.: diametro arm. trasversale

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C3*, sestetto *1* (Stato limite di salvaguardia della Vita).


Situazione peggiore: Punto maglia PM1, Caso C3, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.: d	Verifica: C.A.: diametro arm. trasversale						
Punto	Caso	Ses.	R _d : Ø[mm]	S _d : Ø[mm]	fs[-]		
PM1	C3	1	10	8	1.25		
PM2	C3	1	10	8	1.25		
PM3	C3	1	10	8	1.25		
PM4	C3	1	10	8	1.25		
PM5	C3	1	10	8	1.25		
PM6	C3	1	10	8	1.25		
PM7	C3	1	10	8	1.25		
PM8	C3	1	10	8	1.25		

Verifica: C.A.: passo arm. trasversale

La situazione di verifica più severa, si ottiene nel punto maglia *PM1*, nel caso di carico *C3*, sestetto *1* (Stato limite di salvaguardia della Vita).

Situazione peggiore: Punto maglia PM1, Caso C3, Sestetto 1

Segue il riassunto della verifica, per tutti i punti maglia, per il caso ed il sestetto che danno il fattore di sicurezza minore.

Verifica: C.A.:	Verifica: C.A.: passo arm. trasversale						
Punto	Caso	Ses.	R _d : P[cm]	S _d : P[cm]	fs[-]		
PM1	C3	1	13	13	1.00		
PM2	C3	1	13	13	1.00		
PM3	C3	1	13	13	1.00		
PM4	C3	1	13	13	1.00		
PM5	C3	1	13	13	1.00		
PM6	C3	1	13	13	1.00		
PM7	C3	1	13	13	1.00		
PM8	C3	1	13	13	1.00		

9. CONCLUSIONI

La struttura dai calcoli svolti risulta verificata in ogni sua parte.

Risulta comunque fondamentale mantenere la struttura nelle condizioni di progetto mediante un attenta manutenzione e soprattutto con un uso corretta della medesima.

Pertanto il committente dovrà provvedere sia alla manutenzione sia a far rispettare le condizioni di uso della medesima struttura.

Il tecnico